Главная
Шпаргалка: Основные определения и теоремы к зачету по функциональному анализу
Шпаргалка: Основные определения и теоремы к зачету по функциональному анализу
Основные
определения и теоремы к зачету по функциональному анализу
Определение: Элемент наилучшего приближения – L – линейное многообразие, плотное в E. "e "xÎE $u:
║x-u║<e
Теорема: Для любого элемента нормированного
пространства существует хотя бы один элемент наилучшего приближения из
конечномерного подпространства.
Теорема: Для элемента из строго нормированного
конечномерного пространства существует единственный элемент наилучшего
приближения из конечномерного подпространства.
Теорема: Рисса о существовании почти ортогонального
элемента. E-НП
LÌE, "eÎ(0,1) $zeÎE\L ║ze║=1 r(ze,L)>1-e
Определение: Полное нормированное пространство- любая
фундаментальная последовательность сходиться.
Теорема: О пополнении нормированного пространства.
Любое нормированное пространство можно считать линейным многообразием, плотным
в некотором полном нормированном пространстве.
Определение: Гильбертово пространство – нормированное
пространство, полное в норме, порожденной скалярным произведением.
Теорема: Для любого элемента гильбертова пространства
существует единственный элемент наилучшего приближения в конечномерном
подпространстве гильбертова пространства.
Определение: L плотное в E, если "xÎE $uÎL: ║x-u║<e
Теорема: Чтобы L было плотно в H ó
ортогональное дополнение к L состояло только из нулевого элемента.
Определение: Сепарабельное – нормированное пространство,
содержащее некоторое счетное плотное в нем множество.
Определение: Ортогональное дополнение – множество элементов
ортогональных к элементам данного пространства.
Определение: Линейный оператор – отображение, для
которого A(ax+by)=aAx+bAy
Определение: Непрерывный оператор – AxàAx0 при xà x0
Определение: L(X,Y) –
пространство линейных операторов
Теорема: Пусть X и Y – полные НП и A – непрерывен на некотором подпространстве
пространства X,
тогда он непрерывен на всем X.
Определение: Ограниченный оператор - "║x║≤1 $с: ║Ax║≤c
Теорема: A – ограниченный ó "xÎX ║Ax║≤c║x║
Теорема: Для того чтобы А был непрерывен ó
чтобы он была ограничен
Теорема: {An} равномерно ограничена è {An}- ограничена.
Теорема: {Anx} – ограниченно ó {║An║}- ограничена.
Определение: Сильная (равномерная) сходимость ║An-A║à0,
nà¥, обозначают
AnàA
Определение: Слабая сходимость - "xÎX ║(An-A)x║Yà0, nà¥
Теорема: Для того, чтобы имела место сильная
сходимость ó {An} сходилась равномерно на замкнутом шаре
радиуса 1
Теорема: Банаха-Штенгауза AnàA nॠслабо è 1)
{║An║}- ограничена
2) AnàA, x’ÌX, x’=x
Теорема: Хана
Банаха. A:D(A)àY, D(A)ÌX è $ A’:XàY 1)
A’x=Ax, xÎD(A) 2) ║A’║=║A║
Определение: Равномерная ограниченность - $a "x: ║x(t)║≤a
Определение: Равностепенная непрерывность "t1,t2 $d: ║x(t1)-x(t2)║<e
Теорема: L(X,Y)
полное, если Y –
полное.
Определение: Ядро – xÎX
Определение: Сопряженное пространство – пространство
функционалов X*:=L(X,E)
Определение: Сопряженный оператор A*: Y*àX*
Теорема: Банаха A:XàY и X,Y- полные нормированные пространства. Тогда
$ A-1 и ограничен.
Определение: Оператор А – обратимый
Определение: Оператор А- непрерывнообратимый если 1) A- обратим, 2) R(A)=Y, 3) A-1-ограничен.
Теорема: A-1 $ и ограничен ó $m>0 "xÎX ║Ax║≥m║x║
Теорема: Рисса о представлении линейного функционала
в гильбертовом пространстве. Пусть f:XàY – линейный ограниченный функционал è $! yÎH "xÎH f(x)=(x,y)
Определение: MÌX называется бикомпактным, если из любой
ограниченной последовательности можно выделить сходящуюся к элементам этого же
множества последовательность.
Определение: Множество называется компактным, если любая
ограниченная последовательность элементов содержит фундаментальную
подпоследовательность.
Теорема: Хаусдорфа. MÌX компактно ó "e>0 $ конечная e-сеть
Теорема: Арцела.
MÌC[a,b] компактно ó все элементы множества равномерно
ограничены и равностепенно непрерывны.
Определение: Компактный (вполне непрерывный) оператор –
замкнутый шар пространства X переводит в замкнутый шар пространства Y.
Определение: s(X,Y) – подпространство компактных операторов
Теорема: Шаудера. AÎs(X,Y) ó A*Îs(X*,Y*)
Линейные нормированные
пространства
сферическая норма
кубическая норма
ромбическая норма
p>1
- Пространства
последовательностей
p>1
или пространство
ограниченных последовательностей
пространство
последовательностей, сходящихся к нулю
пространство сходящихся
последовательностей
пространство непрерывных на функций
пространство k раз непрерывно дифференцируемых на функций
£p[a,b] пространство функций,
интегрируемых в степени p (не Гильбертово)
- пополнение £p[a,b] (Гильбертово)
Неравенство
Гёльдера
p,q>0
Неравенство
Минковского
Список
литературы
Для подготовки
данной работы были использованы материалы с сайта http://www.ed.vseved.ru/
|