Главная
Реферат: Вычисление координат центра тяжести плоской фигуры
Реферат: Вычисление координат центра тяжести плоской фигуры
Вычисление координат центра тяжести плоской фигуры
I.Координаты центра тяжести.
Пусть на плоскости Oxy дана система материальных точек
P1(x1,y1); P2(x2,y2); ... , Pn(xn,yn)
c массами m1,m2,m3, . . . , mn.
Произведения ximi и yimi называются статическими моментами массы mi относительно осей Oy и Ox.
Обозначим через xc и yc координаты центра тяжести данной системы. Тогда координаты центра тяжести описанной материальной системы определяются формулами:
Эти формулы используются при отыскании центров тяжести различных фигур и тел.
1.Центр тяжести плоской фигуры.
Пусть данная фигура, ограниченная линиями y=f1(x), y=f2(x), x=a, x=b, представляет собой материальную плоскую фигуру. Поверхностною плотность, то есть массу единицы площади поверхности, будем считать постоянной и равной d
для всех частей фигуры.
Разобьем данную фигуру прямыми x=a, x=x1, . . . , x=xn=b
на полоски ширины D x1, D
x2, . . ., D xn.
Масса каждой полоски будет равна произведению ее площади на плотность d
. Если каждую полоску заменить прямоугольником (рис.1) с основанием D
xi и высотой f2(x )-f1(x
), где x ,
то масса полоски будет приближенно равна
(i = 1, 2, ...
,n).
Приближенно центр тяжести этой полоски будет находиться в центре соответствующего прямоугольника:
Заменяя теперь каждую полоску материальной точкой, масса которой равна массе соответствующей полоски и сосредоточена в центре тяжести этой полоски, найдем приближенное значение центра тяжести всей фигуры:
Переходя к пределу при , получим точные координаты центра тяжести данной фигуры:
Эти формулы справедливы для любой однородной (т.е. имеющей постоянную плотность во всех точках) плоской фигуры. Как видно, координаты центра тяжести не зависят от плотности d
фигуры (в процессе вычисления d
сократилось).
2. Координаты центра тяжести плоской фигуры
В предыдущей главе указывалось, что координаты центра тяжести системы материальных точек P1, P2, . . ., Pn c массами m1, m2, . . ., mn определяются по формулам
.
В пределе при интегральные суммы, стоящие в числителях и знаменателях дробей, перейдут в двойные интегралы, таким образом получаются точные формулы для вычисления координат центра тяжести плоской фигуры:
(*)
Эти формулы, выведенные для плоской фигуры с поверхностной плотностью 1, остаются в силе и для фигуры, имеющей любую другую, постоянную во всех точках плотность g
.
Если же поверхностная плотность переменна:
то соответствующие формулы будут иметь вид
Выражения
и
называются статическими моментами плоской фигуры D относительно осей Oy и Ox.
Интеграл выражает величину массы рассматриваемой фигуры.
3.Теоремы Гульдена.
Теорема 1.
Площадь поверхности, полученной при вращении дуги плоской кривой вокруг оси, лежащей в плоскости этой кривой и не пересекающей ее, равна длине дуги кривой, умноженной на длину окружности, описанной центром тяжести дуги.
Теорема 2.
Объем тела, полученного при вращении плоской фигуры вокруг оси, не пересекающей ее и расположенной в плоскости фигуры, равен произведению площади этой фигуры на длину окружности, описанной центром тяжести фигуры.
II.Примеры.
1)Условие: Найти координаты центра тяжести полуокружности X2+Y2=a2, расположенной над осью Ox.
Решение: Определим абсциссу центра тяжести:
,
Найдем теперь ординату центра тяжести:
2)Условие: Определить координаты центра тяжести сегмента параболы y2=ax, отсекаемого прямой, х=а (рис. 2)
Решение: В данном случае поэтому
(так как сегмент симметричен относительно оси Ox)
3)Условие: Определить координаты центра тяжести четверти эллипса (рис. 3)
полагая, что поверхностная плотность во всех точках равна 1.
Решение: По формулам (*) получаем:
4)Условие:
Найти координаты центра тяжести дуги цепной линии .
Решение:
1Так как кривая симметрична относительно оси Oy, то ее центр тяжести лежит
на оси Oy, т.е. Xc= 0. Остается найти .
Имеем тогда
длина дуги
Следовательно,
5)Условие:
Пользуясь теоремой Гульдена найти координаты центра тяжести четверти круга
.
Решение:
При вращении четверти круга вокруг оси Ох получим полушар, объем которого равен
Согласно второй теореме Гульдена,
Отсюда
Центр тяжести четверти круга лежит на оси симметрии, т.е. на биссектрисе I
координатного угла, а потому
III.СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
- Данко П.Е., Попов А.Г., Кожевникова Т.Я. “Высшая математика в упражнениях и задачах”, часть 2, “Высшая школа”, Москва, 1999.
- Пискунов Н.С. “Дифференциальное и интегральное исчисления для втузов”, том 2, “Наука”, Москва, 1965
|