Главная
Реферат: Интеграл по комплексной переменной
Реферат: Интеграл по комплексной переменной
Интеграл по комплексной переменной.
Определение 1: Кривая Г называется гладкой ,если она имеет непрерывно изменяющуюся касательную.
Определение 2: Кривая называется кусочно-гладкой ,если она состоит из конечного числа гладких дуг.
Основные свойства : Пусть на комплексной плоскости Z задана кусочно-гладкая кривая С длиной l, используя параметрическое задание кривой С зададим h(t) и x (t), где h и x
являются кусочно-гладкими кривыми от действительной переменной t. Пусть a<= t<=b, причем a и b могут быть бесконечными числами .
Пусть x и h удовлетворяют условию : [x‘(t)]2 + [h‘(t)]2 ¹ 0. Очевидно, что задание координат h =h(t) и x=x (t), равносильно заданию комплексной функции z (t)= x (t) + ih(t).
Пусть в каждой точке z (t) кривой С определена некоторая функция f (z ). Разобьем кривую С на n – частичных дуг точками деления z0 , z1
, z2 , …, z n-1 соответствующие возрастающим значениям параметра t, т.е. t0, t1, …, t i+1 > t i.
Dz i =z i – z i-1. Составим интегрируемую функцию S = åf (z*)Dz i . (1)
где z*– производная точки этой дуги.
Если при стремлении max |Dz i |® 0 существует предел частных сумм не
зависящий ни от способа разбиения кривой С на частичные дуги, ни от выбора точек z i , то этот предел называется интегралом от функции f (z ) по кривой С.
(2)
f (zi* ) = u (Pi*) + iv (Pi*) (3)
где Dz i = Dx (t) + iDh(t) (x (t) и h(t) - действительные числа)
Подставив (3) в (1) получим :
(4)
Очевидно, что (4) состоит из суммы двух частных сумм, криволинейных интегралов действительной
переменной. Переходя в (4) к пределу при Dx и Dh ® 0 и предполагая, что данные пределы существуют, получаем :
(5)
Заметим, что для существования криволинейного интегралов, входящих в (5), а тем самым и для
существования интеграла (2) достаточно кусочной непрерывности функций u и v. Это
означает, что (2) существует и в случае неаналитичности функции f (z ).
Сформулируем некоторые свойства интеграла от функции комплексной переменной. Из равенства
(5) следуют свойства :
О ограниченности интеграла.
При этом z = j (z ).
7.) Пусть Cp – окружность радиуса r, с центром в точке Z0. Обход вокруг контура Cp осуществляется против часовой стрелки. Cp : z = Z0 + r×eij, 0 £ j £ 2p,
dz = ir×eij dj .
Кусочно-гладкую замкнутую кривую будем называть
замкнутым контуром, а интеграл по замкнутому контуру – контурным интегралом.
ТЕОРЕМА КОШИ.
В качестве положительного обхода контура выберем направление при котором внутренняя
область, ограниченная данным замкнутым контуром остается слева от направления движения :
Для действительной переменной имеют место
формулы Грина. Известно, что если функции P(x, y) и Q(x, y) являются непрерывными в некоторой заданной области G, ограниченны кусочно-гладкой кривой С, а их частные
производные 1-го порядка непрерывны в G, то имеет место формула Грина:
( 8 )
ТЕОРЕМА : Пусть в односвязной области G задана аналитическая функция f(Z), тогда
интеграл от этой функции по замкнутому контуру Г целиком лежащему в G , равен нулю.
Доказательство : из формулы (5) следует:
Т.к. f(z ) аналитическая всюду, то U(x, y), V(x, y) - непрерывны в области, ограниченной этим контуром и
при этом выполняются условия Коши-Римана. Используя свойство криволинейных интегралов:
Аналогично :
По условию Коши-Римана в последних равенствах скобки равны нулю, а значит и оба
криволинейных интеграла равны нулю. Отсюда :
ТЕОРЕМА 2 (Вторая формулировка теоремы Коши) : Если функция f(z) является аналитической в односвязной области G, ограниченной кусочно-гладким контуром C, и непрерывна в замкнутой области G, то интеграл от такой функции по границе С области G равен нулю.
TEOPEMA 3 (Расширение теоремы Коши на многосвязную область) :
Пусть f (z) является аналитической функцией в
многосвязной области G, ограниченной извне контуром С0, а изнутри контурами С1, С2,
.. ,Сn (см. рис.). Пусть f (z) непрерывна в замкнутой области G, тогда :
, где С – полная граница области G, состоящая из контуров С1, С2, .. , Сn. Причем обход кривой С осуществляется в положительном
направлении.
Неопределенный интеграл.
Следствием формулы Коши является следующее положение : пусть f(Z) аналитична в односвязной области G, зафиксируем в этой области точку Z0 и
обозначим:
интеграл по какой-либо кривой, целиком лежащей в области G, содержащей Z0 и Z, в
силу теории Коши этот интеграл не зависит от выбора кривой интегрирования и является однозначной функцией Ф(Z).
Аналитическая функция Ф(Z) называется первообразной от функции f(Z) в области G, если в этой области имеет место равенство : Ф¢
(Z) = f( Z).
Определение: Совокупность всех первообразных называется неопределенным интегралом от комплексной функции f(Z). Так же как и
в случае с функцией действительного переменного имеет место равенство :
( 9)
Это аналог формулы Ньютона-Лейбница.
Интеграл Коши. Вывод формулы Коши.
Ранее была сформулирована теорема Коши, которая
позволяет установить связь между значениями аналитической функции во внутренних точках области ее аналитичности и граничными значениями этой функции.
Пусть функция f(Z) – аналитическая функция в односвязной области G, ограниченной контуром С. Возьмем внутри этой области
произвольную точку Z0 и в области G вокруг этой точки построим замкнутый контур Г. Рассмотрим вспомогательную функцию j (Z). Эта функция аналитична в области G всюду, кроме точки Z=Z0. Проведем контур g
с достаточным радиусом, ограничивающий точку Z0, тогда функция будет аналитична в некоторой двусвязной области, заключенной между
контурами Г и g. Согласно теореме Коши имеем :
По свойствам интегралов :
(2 )
Так как левый интеграл в (2) не зависит от выбора
контура интегрирования, то и правый интеграл также не будет зависеть от выбора контура. Выберем в качестве g
окружность gr с радиусом r . Тогда:
(3)
Уравнение окружности gr : z = Z0 + reij (4)
Подставив (4) в (3) получим :
( 5 )
( 6 )
(7)
Устремим gr® 0, т.е. r® 0.
Тогда т.к. функция f(z) аналитична в точке Z=Z0 и всюду в области G, а следовательно и непрерывна в G, то для всех e>0
существует r>0, что для всех z из r–окрестности точки Z0 выполняется | f(z) – f(Z0) | < e.
(8)
Подставив ( 7) в ( 6) с учетом ( 8) получаем :
Подставляя в ( 5) и выражая f(Z0) имеем :
(9)
Это интеграл Коши.
Интеграл, стоящий в (9) в правой части выражает значение аналитической функции f(z) в
некоторой точке Z0 через ее значение на произвольном контуре g , лежащем в области аналитичности
функции f(z) и содержащем точку Z0 внутри.
Очевидно, что если бы функция f(z) была аналитична и в точках контура С, то в качестве границы g в формуле (9) можно было использовать
контур С.
Приведенные рассуждения остаются справедливыми и в случае многосвязной области G.
Следствие : Интеграл Коши, целиком принадлежащий аналитической области G имеет смысл для любого положения Z0 на
комплексной плоскости при условии, что эта точка есть внутренней точкой области Г. При этом если Z0 принадлежит области с границей Г, то значение
интеграла равно (9), а если т. Z0 принадлежит внешней области, то интеграл равен нулю :
При Z0 Î Г
указанный интеграл не существует.
Интегралы, зависящие от параметра.
Рассматривая интеграл Коши, видим, что подинтегральная функция зависит от 2-х комплексных переменных
: переменной интегрирования z и Z0. Таким образом интеграл Коши может быть рассмотрен как интеграл, зависящий от
параметра, в качестве которого выбираем точку Z0.
Пусть задана функция двух комплексных переменных j (Z, z ), причем Z= x + iy в точке, принадлежащей некоторой комплексной плоскости G. z= x+
ih Î С. (С - граница G).
Взаимное расположение области и кривой произвольно. Пусть функция j (Z, z ) удовлетворяет условиям : 1) Функция
для всех значений z Î С является аналитической в области G. 2) Функция j (Z, z ) и ее производная ¶j/¶Z
являются непрерывными функциями по совокупности переменных Z и z при произвольном изменении области G и переменных
на кривой С. Очевидно, что при сделанных предположениях :
Интеграл существует и является функцией
комплексной переменной. Справедлива формула :
(2)
Эта формула устанавливает возможность вычисления производной от исходного интеграла путем
дифференцирования подинтегральной функции по параметру.
ТЕОРЕМА. Пусть f(Z) является аналитической функцией в области G и непрерывной
в области G (G включая граничные точки ), тогда во внутренних точках области G существует производная любого порядка от функции f(Z) причем для ее
вычисления имеет место формула :
(3)
С помощью формулы (3) можно получить производную любого порядка от аналитической
функции f (Z) в любой точке Z области ее аналитичности. Для доказательства этой теоремы используется формула (2) и соответственные рассуждения, которые привели
к ее выводу.
ТЕОРЕМА МОРЕРА. Пусть f(Z) непрерывна в односвязной области G и интеграл от этой функции по
любому замкнутому контуру, целиком принадлежащему G равен 0. Тогда функция f (Z) является
аналитической функцией в области G. Эта теорема обобщается и на случай многосвязной области G.
Разложение функции комплексного переменного в ряды.
Если функция f(x, y) определена и непрерывна вместе с частными производными (до n-го порядка ), то существует
разложение этой функции в ряд Тейлора :
Итак, если задана функция f (z) комплексного переменного, причем f (z) непрерывная вместе
с производными до n-го порядка, то:
(2)
– разложение в ряд Тейлора.
Формула (2) записана для всех Z принадлежащих некоторому кругу | Z-Z0 |<R, где R – радиус сходимости ряда (2).
Функция f (z), которая может быть представлена в виде ряда (2) является аналитической функцией.
Неаналитическая функция в ряд Тейлора не раскладывается.
(3)
(4)
(5)
Причем | Z | < R, R ® ¥ .
Формулы ЭЙЛЕРА.
Применим разложение (3) положив, что Z = ix и Z= - ix;
(6)
Аналогично взяв Z = - ix получим :
(7)
Из (6) и (7) можно выразить т.н. формулы Эйлера :
(8)
В общем случае :
(9)
Известно, что :
(10)
Тогда из (9) и (10) вытекает связь между тригонометрическими и гиперболическими косинусами и
синусами:
Ряд ЛОРАНА.
Пусть функция f(z) является аналитической функцией в некотором круге радиусом R, тогда ее
можно разложить в ряд Тейлора (2). Получим тот же ряд другим путем.
ТЕОРЕМА 1.
Однозначная функция f(Z) аналитическая в круге радиусом |Z-Z0| < R
раскладывается в сходящийся к ней степенной ряд по степеням Z-Z0.
Опишем в круге радиусом R окружность r, принадлежащую кругу с радиусом R.
Возьмем в круге радиуса r точку Z, а на границе области точку z , тогда f(z) будет аналитична внутри круга с
радиусом r и на его границе. Выполняется условие для существования интеграла Коши :
(13)
(11)
Поскольку
, то выражение можно представить как сумму бесконечно убывающей геометрической прогрессии со знаменателем , т.е. :
(12)
Представим равномерно сходящимся рядом в круге радиуса r, умножая (12) на 1/(2pi) и интегрируя по L при фиксированном
Z, получим : слева интеграл (13) который равен f (Z), а справа будет сумма интегралов :
Обозначая , получим : (14)
Это разложение функции f (Z) в круге R в ряд Тейлора. Сравнивая (14) с рядом (2) находим, что (15)
ТЕОРЕМА 2.
Если однозначная функция f(Z) аналитична вне круга с радиусом r с центром в точке
Z0 для всех Z выполняется неравенство r < |Z-Z0 |, то она представляется рядом :
(16)
где h - ориентированная против часовой стрелки окружность радиуса r (сколь угодно большое число). Если обозначить (17) , получим :
(18)
ТЕОРЕМА 3.
Если однозначная функция f(Z) аналитическая в кольце Z< |Z-Z0 |<R, где 0£ Z<R<¥
, то она раскладывается в сходящийся степенной ряд :
(19)
f1 и f2 можно представить в виде двух рядов :
(20)
(21)
Ряд (19) – ряд Лорана, при этом ряд (20) сходится в круге радиуса R, ряд (21) сходится вне круга радиуса R функции f2(Z). Общая область сходимости
ряда – кольцо между r и R.
f1(Z) – правильная часть.
f2(Z) – главная часть ряда Лорана.
Ряд Тейлора – частный случай ряда Лорана при отсутствии главной его части.
Классификация изолированных особых точек. Вычеты.
Определение 1. Особой точкой функции f(Z) определенной в области (замкнутой) G, ограниченной
Жордановой кривой, называется точка Z=Z0 Î G в которой аналитичность функции f1(Z)
нарушается. Рабочая точка Z=Z0 функции f(Z), ограниченной в круге |Z-Z0|<R называется изолированной, если функция f(Z) в каждой точке этого круга аналитична,
кроме самой точки Z=Z0. В зависимости от поведения функции f(Z) в окрестности изолированных особых точек последние
классифицируются на :
1) Устранимые особые точки. Ими называются особые точки, для которых существует , где А – конечное число.
2) Если для особой точки существует предел , то такая особая точка называется полюсом.
3) Если не существует, то
точка Z=Z0 называется существенной особой точкой.
Если С-n=0, то особая точка есть устранимая особая точка.
Пусть f(Z0)=C0 и C-n для всех n=1,2,3,..,m отличного от 0, а для всех n ®
m+1 C-n=0, тогда Z=Z0 будет являться полюсом порядка m.
При m>1 такой полюс будет называться простым.
, если m ® ¥ , то в этом случае в точке Z=Z0 имеем существенную особенность.
Определение 2. Вычетом функции f(Z) в круге |Z-Z0|<R, ограничивающем изолированную особую точку Z=Z0 называется интеграл : , где L – ориентированный против часовой стрелки контур целиком расположенный в круге радиуса R,
содержащем Z0. Вычет существует только для изолированных особых точек. Очевидно, что вычет функции f(z) при Z=Z0 равен
первому коэффициенту ряда главной части Лорана :
Если полюс имеет кратность m ³ 1, то для определения вычетов используется формула :
(3)
при m=1 :
Основная теорема о вычетах.
Пусть f(z) аналитическая в области G кроме конечного числа полюсов Z = a1, a2, …, ak. g –произвольный, кусочно-гладкий замкнутый
контур содержащий внутри себя эти точки и целиком лежащий внутри области G. В этом случае интеграл равен сумме вычетов относительно a1, a2, …, ak и т.д. умноженный на 2pi :
(5)
Пример :
Найти вычет
Особые точки : Z1=1, Z2= - 3.
Определим порядок полюсов – все полюсы первого порядка.
Используем формулу (3) :
Интегральные преобразования.
Операционное исчисление и некоторые его приложения.
Пусть задана функция действительного переменного t, которая удовлетворяет условиям :
1)
2) Функция f(t) кусочно-непрерывная (имеет конечное число точек разрыва первого рода).
3) Для любого значения параметра t>0 существует M>0 и S0³0 такие, что выполняется условие : |f(t)|<Me S0t
Рассмотрим функцию f(t)×e-pt , где р – комплексное число р = ( а + i b).
(1)
Применим к этому соотношению формулу Эйлера :
Проинтегрировав это равенство получим :
(2)
Оценим левую часть равенства (2) :
А согласно свойству (3) |f(t)| < Me S0t
В случае если a>S0 имеем :
Аналогично можно доказать, что существует и сходится второй интеграл в равенстве (2).
Таким образом при a>S0 интеграл, стоящий в левой части равенства (2) также
существует и сходится. Этот интеграл определяет собой функцию от комплексного параметра р :
(3)
Функция F(p) называется изображением функции f(t) по Лапласу, а функция f(t) по отношению
к F(p) называется оригиналом.
f(t) Ü F(p), где F(p) – изображение функции f(t) по Лапласу.
- это оператор Лапласа.
Смысл введения интегральных преобразований.
Этот смысл состоит в следующем : с помощью перехода в область изображения удается
упростить решение многих задач, в частности свести задачу решения многих задач дифференциального, интегрального и интегро-дифференциального уравнения к
решению алгебраических уравнений.
Теорема единственности: если две функции j( t) и Y(t) имеют одно и то же изображение F(p), то эти
функции тождественно равны.
Смысл теоремы : если при решении задачи мы определим изображение искомой функции, а затем по
изображению нашли оригинал, то на основании теоремы единственности можно утверждать, что найденная функция является решением в области оригинала и
причем единственным.
Изображение функций s0(t), sin (t), cos
(t).
Определение: называется единичной
функцией.
Единичная функция удовлетворяет требованиям, которые должны быть наложены на функцию для
существования изображения по Лапласу. Найдем это изображение :
Изображение единичной функции
Рассуждая аналогичным образом получим изображение для функции sin(t) :
интегрируя по частям получим :
т.е.
Аналогично можно доказать, что cos (t) переходит в функцию в области преобразований. Откуда :
Изображение функции с измененным масштабом независимого переменного.
где а – константа.
Таким образом :
и
Свойства линейности изображения.
Теорема : изображение суммы нескольких функций умноженное на постоянные равны сумме изображений этих функций умноженных на те же постоянные.
Если , то , где
Теорема смещения : если функция F(p) это изображение f(t), то F(a+p) является изображением функции e-at f(t) (4)
Доказательство :
Применим оператор Лапласа к левой части равенства (4)
Что и требовалось доказать.
Таблица основных изображений:
Изображение производных.
Теорема. Если , то справедливо выражение :
(1)
Доказательство :
(2)
(3)
Подставляя (3) в (2) и учитывая третье условие существования функции Лапласа имеем :
Что и требовалось доказать.
Пример: Решить дифференциальное уравнение :
Если x(0)=0 и x’(0)=0
Предположим, что x(t) – решение в области оригиналов и , где - решение в области изображений.
Изображающее уравнение :
Теорема о интегрировании оригинала. Пусть находится в области оригиналов, , тогда также оригинал, а его изображение .
Таким образом операции интегрирования в области оригиналов соответствует операция деления в
области изображений.
Теорема о интегрировании изображений : Пусть – функция оригинал, которая имеет изображение и также оригинал, а - является сходящимся интегралом, тогда .
Толкование теоремы : операция деления на аргумент в области оригиналов соответствует операции
интегрирования в пределах от р до ¥ в области изображений.
Понятие о свертке функций. Теорема о свертке.
Пусть заданы две функции a(t) и b(t), удовлетворяющие условиям существования изображения
по Лапласу, тогда сверткой таких функций называется следующая функция :
(1)
Свертка обозначается следующим образом :
(1’)
Равенства (1) и (1’) идентичны.
Свертка функции подчиняется переместительному закону.
Доказательство:
Теорема о умножении изображений. Пусть и , тогда произведение изображений представляется
сверткой оригиналов .
Доказательство :
Пусть изображение свертки
(1)
Интеграл (1) представляет собой повторный интеграл относительно переменных t и t .
Изменим порядок интегрирования. Переменные t и t входят в выражение симметрично. Замена переменной производится эквивалентно.
Если в последнем интеграле сделать замену переменной, то после преобразований
последний интеграл преобразуется в функцию F2(p).
Операция умножения двух функций в пространстве изображений соответствует операции
свертки их оригиналов в области оригиналов. Обобщением теоремы о свертке есть теорема Эфроса.
Теорема Эфроса. Пусть функция находится в области
оригиналов, , а Ф(р) и q(р) – аналитические функции в области изображений,
такие, что , тогда .
В практических вычислениях важную роль играет следствие из теоремы о свертке, наз.
интеграл Дюамеля. Пусть все условия теоремы выполняются, тогда
(2)
Соотношение (2) применяется при решении дифференциальных уравнений.
Обратное преобразование Лапласа.
- Это прямое преобразование Лапласа.
Обратное преобразование есть возможность получить функцию-оригинал через известную
функцию-изображение :
, где s – некоторая константа.
Пользоваться формулой для обратного преобразования можно при определенном виде функции F(p), либо для
численного нахождения функции-оригинала по известному изображению.
Теоремы разложения.
Известная методика разложения дробно-рациональных функций на сумму элементарных дробей
(1)-(4) может быть представлена в виде двух теорем разложения.
Первая теорема разложения. Пусть F(p) – изображение некоторой функции, тогда эта функция представляется в виде , k – постоянная, может быть сколь угодно большим числом, , то возможен почленный переход в пространство оригиналов с помощью
формулы : .
Вторая теорема разложения. Если изображение представляется дробно-рациональной
функцией . Степень числа s меньше
степени знаменателя n, знаменатель имеет корни a1, a2, …, a n соответствующий кратности k1, k2, …, kn , при этом k1+ k2 +…+ kn = n. В этом случае оригинал функции определяется по
формуле :
(3)
Например :
Связь между преобразованиями Фурье и Лапласа.
Преобразование Лапласа имеет вид :
(1)
На f(t) наложены условия :
1) f(t) определена и непрерывна на всем интервале: (-¥ ; ¥ )
2) f(t) º 0 , t Î (- ¥ ;0)
3) При M, S0 >0 , для всех t > 0 выполняется условие |f(t)|<Me S0t
Если отказаться от условий 2 и 3, и считать, что f(t) принимает
произвольное значение при t < 0, то вместо (1) можно рассмотреть следующий интеграл :
(2)
Формула (2) – двустороннее преобразование Лапласа.
Пусть в (1) и (2) p =a + in, где a и n –
действительные числа.
Предположим, что Re(p) = a = 0, т.е.
(4)
(5)
(4) и (5) соответственно односторонние и двусторонние преобразования Фурье.
Для существования преобразования Фурье, функция должна удовлетворять условиям :
1) Должна быть определена на промежутке (-¥ ; ¥ ) , непрерывна всюду, за исключением конечного числа точек
разрыва первого рода.
2) Любой конечный промежуток оси t можно разделить на конечное число промежутков, в
каждом из которых функция либо кусочно-гладкая, либо кусочно-монотонная.
3) Функция абсолютно интегрируема : , это условие выполняется, если |f(t)|<Me S0t
Из существования преобразования Лапласа не следует преобразование Фурье. Преобразования Фурье
существуют для более узкого класса функций. Преобразования Фурье не существуют для постоянной и ограниченной функции : f(t) = C
Аналогично преобразования Фурье не существуют и для гармоничных функций :
т.к.
Если f(t) = 0 при t>0 и преобразование для этой функции существует, то оно
может быть получено из таблицы оригиналов и изображений для преобразования Лапласа путем замены параметра t на iu, но при этом необходимо убедиться, что F(p) не обращается в число справа от мнимой оси.
Если f(t) ¹ 0, t<0
(6)
Обозначим
Очевидно, что (6’)
Функция (6) называется спектральной плотностью
В связи с изложенным можно указать два пути отыскания спектральной плотности :
1) Вычисление интеграла (5)
2) Использование преобразования Лапласа или Фурье.
Непосредственное вычисление спектральной плотности для абсолютно интегрируемой функции.
Функция F(iu) может быть представлена, как комплексная функция
действительной переменной
(7)
|F(iu)| - амплитудное значение спектральной плотности, y (u) – фазовый угол.
В алгебраической форме : F(iu) = a(u) +ib(u)
(8)
(9)
Для непосредственного вычисления спектральной плотности вычисляется интеграл (6), а
затем по формулам (8) и (9) определяется амплитудное значение |F(iu)| и фазовый
угол y (u).
Пример.
Найти спектральную плотность импульса :
откуда , далее
Отыскание спектральной плотности для неабсолютно интегрируемых функций.
Прямое преобразование Фурье для таких функций не существует, существует преобразование
Лагранжа.
Прямое преобразование Фурье необходимо :
1) Для облегчения процесса решения дифференциальных и интегральных уравнений.
2) Для исследования амплитудной и частотной характеристик спектральной плотности, определенной всюду на числовой оси.
Введем следующее определение спектральной плотности для неабсолютно интегрируемых
функций:
Если для заданной функции y=f(t) существует непрерывное изображение по Лапласу F(p), то спектральной плотностью функции называется
изображение функции по Лапласу при p = iu.
Спектральной плотностью F1(iu)
неабсолютно интегрируемой функции называется предел от спектральной плотности F2(iua) абсолютно
интегрируемой функции.
|