|
Научно-образовательный портал
2FJ.RU |
|
|
Главная
Курсовая: Теория электрических цепей
Курсовая: Теория электрических цепей
Часть 1.
Анализ цепи во временной области методом переменных состояния при
постоянных воздействиях.
Дано:
Для схемы:
U0(t)= U0=const U0=5 В
i0(t)=I0(1(t) I0=2 A
Составить уравнения состояния для цепи при t(0.
Переменными состояния для данной схемы будут являться напряжения на
емкостях С1 и С4. Для нахождения уравнений состояния запишем уравнения
по I и II законам Кирхгофа:
(1)
Для нахождения производных переменных состояния решим следующую систему,
полученную из системы (1), приняв за неизвестные все токи, участвующие в
системе (1) и первые производные переменных состояния. Переменные
состояния примем за известные величины для получения их в правой части
уравнений состояния:
(2)
Решаем эту систему в матричном виде с помощью MathCad:
Таким образом, уравнения состояния будут иметь вид:
1.2 Найти точные решения уравнений состояния.
Сначала найдем корни характеристического уравнения как собственные числа
матрицы, составленной из коэффициентов при переменных состояния в
уравнениях состояния:
Общий вид точных решений уравнений состояния:
Вынужденные составляющие найдем как частное решение уравнений состояния,
учитывая то, что если в цепи включены только постоянные источники
питания, значит, и принужденные составляющие будут константами,
соответственно производные принужденных составляющих будут равны нулю.
Учитывая выше сказанное, найдем их из уравнений состояния следующим
способом:
Начальные условия (находятся из схемы):
Для нахождения постоянных интегрирования A1, A2, A3, A4 требуется 4
уравнения. Первые два уравнения получим из выражений точного решения
уравнений состояния, учитывая законы коммутаций: переменные состояния не
меняют своего значения в момент коммутации.
При t=0:
Далее найдем значения производных переменных состояния при t=0 из
уравнений состояния:
Выражения эти производных найденные из выражений решения уравнений
состояния:
При t=0:
Таким образом имеем 4 уравнения для нахождения постоянных
интегрирования, находим их:
Точные решения уравнений состояния:
Найти решения уравнений состояния, используя один из численных методов.
Для численного решения уравнений состояния воспользуемся алгоритмом
Эйлера:
Подставляя выражения производных из уравнений состояния:
h – шаг расчета =2*10-6 с. i=1…100. Переменными с нулевыми индексами
являются значения начальных условий.
1.2.2 Найти точные решения уравнений состояния.(второй способ)
e(A)t = a0 + a1(A) e(A)t=
(X) = [e(A)t-1][A]-1[B][V]
1.4 Построить точные и численные решения уравнений состояния, совместив
их попарно на одном графике для каждой из переменной состояния.
Часть 2.
Анализ цепи операторным методом при апериодическом воздействии.
Анализу подлежит следующая цепь:
Параметры импульса: Um=10 В tu=6*10-5 c
Форма импульса:
воспользуемся методом пропорциональных величин и определим u(t)=1(t),
его Лапласово изображение U0(s)=1/s.
Запишем уравнения по законам Кирхгофа в операторной форме, учитывая, что
начальные условия нулевые:
Решаем эту систему:
Таким образом:
Функция передачи:
2.2 Найти нули и полюсы функции передачи и нанести их на плоскость
комплексной частоты.Полюсы:
Нули:
Плоскость комплексной частоты:
2.3 Найти переходную и импульсную характеристики для выходного
напряжения.
Импульсная характеристика:
Выделим постоянную часть в HU(s):
Числитель получившейся дроби:
Упрощенное выражение HU(s):
Для нахождения оригинала воспользуемся теоремой о разложении. Для этого
найдем производную знаменателя:
Коэффициенты разложения:
Оригинал импульсной характеристики:
Переходная характеристика:
Этим же методом находим оригинал характеристики:
2.4 Определить изображение по Лапласу входного импульса.
Изабражение по Лапласу фукции f(t):
Входной импульс представляет собой функцию
Поэтому изображение входного сигнала будет
2.5 Найти напряжение на выходе схемы, используя HU(s).
Изображение выходного сигнала:
и при части, не имеющей этого множителя:
,используя теорему о разложении:
Функция напряжения на выходе схемы, получена с использованием теоремы о
смещении оригинала:
2.6 Построить на одном графике переходную и импульсную характеристики
цепи, на другом – входной и выходной сигналы.
Переходная h1(t) и импульсная h(t) характеристики.
Входной и выходной сигналы.
Часть 3.
Анализ цепи частотным методом при апериодическом воздействии.
3.1 Найти и построить амплитудно-фазовую (АФХ), амлитудно-частотную
(АЧХ) и фазо-частотную (ФЧХ) характеристики функций передачи HU(s).
амплитудно-фазовая характеристика:
амплитудно-частотная характеристика:
фазо-частотная характеристика:
График АЧХ:
График ФЧХ:
.
с-1.
.
Амплитудный спектр входного сигнала:
Фазовый спектр входного сигнала:
График амплитудного и фазового спектра входного сигнала:
с-1 .
3.4 Сопоставляя спектры входного сигнала с частотными характеристиками
цепи, дать предварительные заключения об ожидаемых искажениях сигнала на
выходе цепи.
Существенная часть амплитудного спектра входного сигнала укладывается в
полосу пропускания, исключая полосу 0-5*104 с-1, где и будут наблюдаться
основные амплитудные искажения. Фазо-частотная характеристика цепи
нелинейна, поэтому здесь будут иметь место фазовые искажения, что видно
на рис.
3.5 Найти и построить амплитудный и фазовый спектр выходного сигнала.
Получаются по формулам:
3.6 Определить выходной сигнал по вещественной частотной характеристике,
используя приближенный метод Гиллемина.
Вещественная характеристика:
Существенную часть этой характеристики кусочно-линейно аппроксимируем.
Начертим первую и вторую производную кусочно-линейной аппроксимирующей
функции.
График вещественной характеристики:
График напряжения, вычисленного по этой формуле, и полученный в ч.2.
Часть 4.
Анализ цепи частотным методом при периодическом воздействии.
Дано: T=18*10-5c. Um=10 В. tu=6*10-5c.
форма сигнала u0(t):
4.1 Разложить в ряд Фурье заданную периодическую последовательность
импульсов и построить ее амплитудный и фазовый спектры.
Коэффициенты ряда Фурье для u0(t) найдём из следующего соотношения:
где (1 = 2(/Т , k=0, 1, 2, ... (1=3.491*104с.
Значения Ak и (k приведены в табл. ,на рис. , построены соответственно
амплитудный и фазовый спектры заданной периодически последовательности
сигналов u0(t).
Таким образом, в соответствии с шириной спектра .
4.2 Построить на одном графике заданную периодическую последовательность
импульсов и ее аппроксимацию отрезком ряда Фурье, число гармоник
которого определяется шириной амплитудного спектра входного сигнала,
найденной в п 3.3.
4.3 Используя рассчитанные в п. 3.1 АЧХ и ФЧХ функции передачи цепи,
определить напряжение или ток на выходе цепи в виде отрезка ряда Фурье.
Для определения коэффициентов ряда Фурье выходного напряжения вычислим
значения АЧХ и ФЧХ функции передачи для значений k(1, k=0, 1, 2, ..., 8.
Тогда
k Ak (k
0 0 0
1 0.208 1.47
2 0.487 -0.026
3 0.436 -1.355
4 0.361 -2.576
5 0.15 2.554
6 0 1.443
7 0.054 -2.785
8 0.037 2.429
9 0 1.371
В итоге получим:
4.4 Построить напряжение на выходе цепи в виде суммы гармоник найденного
отрезка ряда Фурье.
Курсовая работа по теории электрических цепей
Лист
ХГТУ УИТС-71 Буренок Н.Н.
Вариант 3
|
|
|
|