Здесь и в табл. 10: КК - параметры поведения контрольных подгрупп животных, ЭК - пренатально алкоголизированных подгрупп, КЭ - постнатально алкоголизированных подгрупп, ЭЭ - пренатально и постнатально алкоголизированных подгрупп; M ± m; n = 12; достоверность отличий * - р < 0,05; * * - р < 0,01, ; * * * - р < 0,001 относительно контроля; Х Х Х - р < 0,001 относительно ЭК, + - р < 0,05; + + - р < 0,01, + + + - р < 0,001 относительно самцов. У пренатально алкоголизированных животных обоего пола отмечено увеличение подвижности (табл. 9, 10). Причем у самок все параметры увеличились в большей степени (в 2-3 раза), чем у самцов (в 2 раза). Суммарная двигательная активность увеличилась в основном за счет увеличения частоты посещений периферических квадратов. У самок в отличие от самцов, также увеличилось количество вертикальных стоек, являющихся показателем исследовательской активности и/или страха. Табл. 10. Параметры поведения в тесте открытого поля взрослых самок крыс.
Соотношение «суммарная двигательная активность:суммарная вертикальная активность», которая у контрольных животных была 2:1, мало изменилась у самцов (табл. 9), а у самок стала 3:1 (табл. 10). Постатальное воздействие этанола на животных, не подвергавшихся пренатальной алкоголизации, не влияло на поведение самок. У самцов же произошли изменения, аналогичны тем, которые были отмечены у пренатально алкоголизированных животных. Соотношения суммарных активностей были у самцов - 4:1 (табл. 9), у самок - 2:1 (табл. 10). Последующая алкоголизация животных, подвергавшихся воздействию этанола во внутриутробном периоде, также по-разному повлияла на поведение самцов и самок (табл. 9, 10). У самцов подвижность резко снижалась и по некоторым показателям стала достоверно ниже не только пренатально алкоголизированных, но и интактных самцов. Соотношение двух видов активности у самцов стало 1,5;1 (табл. 9). Подвижность самок, а, следовательно, и соотношение суммарных двигательной и вертикальной активностей, была такой же, как и у самок, подвергавшихся только пренатальной алкоголизации. Суммарная вертикальная активность - показатель реакции страха или исследовательской активности [72, 74] - вернулась практически к норме. Результаты теста отразили то, что пренатальная алкоголизация усугубляла нарушение поведенческих реакций у взрослых самцов при хроническом воздействии этанола. На самок пренатальная алкоголизация такого эффекта не оказывала. 3.2.2. Исследование влияния хронической алкоголизации на активность карбоксипептидазы Н в тканях взрослых крыс, испытавших пренатальное воздействие этанолаВ табл. 11 и на рис. 9-12 представлены результаты исследования активности КПН при пренатальной, постнатальной и обоих вместе видах алкоголизации крыс обоего пола. Пол достоверно влиял на активность КПН в гипофизе, гипоталамусе, гиппокампе, четверохолмие и половых железах (табл. 11). У интактных самок в этих тканях активность фермента была достоверно ниже, чем у самцов. Согласно данным дисперсионного анализа пренатальная алкоголизация влияла на активность КПН во всех отделах, кроме стриатума и гиппокампа (табл. 11). В четверохолмие, надпочечниках и семенниках самцов, испытавших внутриутробное воздействие этанола, активность КПН была ниже, чем у контрольных самцов (рис. 9, 10). У пренатально алкоголизированных самок в гипоталамусе и гипофизе активность была выше, а в четверохолмие ниже, чем у контрольных самок (рис. 11, 12). Взаимодействие пренатальной алкоголизации и пола влияло на активность исследованного фермента в гипофизе, стриатуме и половых железах (табл. 11). Пренатальная алкоголизация вызывала изменение активности КПН в разных тканях у самцов и самок: у самцов в четверохолмие, надпочечниках и семенниках; у самок в гипоталамусе, четверохолмие и гипофизе. Причем у самцов активность КПН снижалась во всех указанных отделах, а у самок повышалась в гипоталамусе и гипофизе и снижалась в четверохолмие. При этом наблюдалось выравнивание ферментативной активности у животных разного пола в гипоталамусе, четверохолмие и половых железах, а в гипофизе самок активность КПН стала выше, чем у самцов. Постнатальная алкоголизация влияла на активность КПН во всех тканях, кроме больших полушарий и гипофиза. Взаимодействие влияния постнатальной алкоголизации и пола на активность КПН было отмечено в гипоталамусе, четверохолмие, гипофизе и половых железах (табл. 11). Табл. 11. Дисперсионный анализ влияния пола, пренатальной алкоголизации, постнатальной алкоголизации и их взаимодействия на активность КПН в тканях взрослых животных.
Примечание: здесь и в табл. 12 значения критерия Фишера: FФ1 - влияние пола, FФ2 - влияние пренатальной алкоголизации, FФ3 - влияние взаимодействия пренатальной алкоголизации и пола, FФ4 -влияние постнатальной алкоголизации, FФ5 - влияние взаимодейстия постнатальной алкоголизации и пола, FФ6 - влияние взаимодействия пренатальной и постнатальной алкоголизации. У постнатально алкоголизированных самцов наблюдалось увеличение ферментативной активности в гипоталамусе и снижение в четверохолмии и семенниках по сравнению с контролем (рис. 9, 10). У постнатально алкоголизированных самок активность КПН была выше, чем у интактных самок, в гиппокампе, четверохолмии, гипофизе и яичниках (рис. 11, 12). Таким образом, постнатальтная алкоголизация вызывала изменение активности КПН в разных тканях у животных разного пола: у самцов в гипоталамусе, четверохолмии и семенниках; у самок в гиппокампе, четверохолмии, гипофизе и яичниках. Причем у самок активность КПН повышалась во всех указанных отделах, а у самцов повышалась в гипоталамусе и снижалась в четверохолмии и семенниках. При этом в гипофизе, гиппокампе, четверохолмии и половых железах постнатально алкоголизированных крыс, в отличие от контрольных, произошло выравнивание ферментативной активности у животных разного пола. В остальных тканях половое соотношение активности КПН осталось таким же, как у интактных подгрупп. При сочетании пренатальной и постнатальной алкоголизации у самцов активность КПН в стриатуме и гиппокампе была выше, а в гипофизе и семенниках ниже, чем у самцов всех других подгрупп (КК, ЭК, КЭ). В гипоталамусе ЭЭ самцов активность фермента была выше по сравнению с контрольными и пренатально алкоголизированными самцами, но не отличалась от постнатально алкоголизированных. В четверохолмие и надпочечниках ЭЭ самцов активность КПН была выше, чем у пренатально алкоголизированных самцов, но не отличалась от контрольных и постнатально алкоголизированных. В больших полушариях самцов, подвергнутых пренатальной и постнатальной интоксикации, активность фермента была ниже по сравнению с контрольными и постнатально алкоголизированными самцами, но не отличалась от пренатально алкоголизированных (рис. 9, 10). По сравнению с самками интактной подгруппы у ЭЭ самок активность КПН была выше в гипоталамусе, гиппокампе, гипофизе, яичниках и ниже в больших полушариях. По сравнению с пренатально алкоголизированными самками у самок ЭЭ подгруппы ферментативная активность была выше в стриатуме, гиппокампе, четверохолмии и яичниках. По сравнению с постнатально алкоголизированными самками у самок ЭЭ подгруппы активность исследуемого фермента была выше в гипоталамусе и ниже в четверохолми. В остальных слу чаях отличия ферментативной активности в тканях самок ЭЭ подгруппы от самок других подгрупп не наблюдались (рис. 11, 12). У ЭЭ самок активность КПН была ниже в стриатуме, гиппокампе, четверохолмии и выше в гипофизе, яичниках по сравнению с самцами ЭЭ подгруппы. Причем, в отличие от контроля половое различие ферментативной активности в гипоталамусе исчезло, в стриатуме появилось. В гипофизе и половых железах половое соотношение активности КПН стало противоположным по сравнению с интактными животными. Таким образом, сочетание пренатальной и постнатальной алкоголизации вызвало по сравнению с контролем изменение активности КПН в большем количестве исследованных тканей, чем каждый из них в отдельности. Причем у эмбрионально алкоголизированных самцов действие постнатальной алкоголизации вызывало в большинстве исследованных тканей более существенные изменения ферментативной активности, чем каждый из этих видов интоксикации в отдельности. Постнатальная интоксикация эмбрионально алкоголизированных самок, напротив, приводила в большинстве тканей к меньшим или таким же изменениям активности КПН по сравнению с контролем, к каким приводило только постнатальное воздействие этанола. Т. е., пренатальная алкоголизация самок не являлась причиной большего влияния последующей постнатальной алкоголизации, что наблюдалось у самцов. Возможно, это свидетельствует о том, что пептидергические системы пренатально алкоголизированных самок, в отличие от самцов, более устойчивы к последующей этанольной интоксикации. 3.2.3. Исследование влияния хронической алкоголизации на активность ФМСФ-ингибируемой карбоксипептидазы в тканях взрослых крыс, испытавших пренатальное воздействие этанолаВ табл. 12 и на рис. 13-16 представлены результаты исследования активности ФМСФ-КП при отдельном и совместном влиянии пренатальной и постнатальной и алкоголизации на крыс обоего пола. По данным дисперсионного анализа (табл. 12) пол достоверно влиял на активность ФМСФ-КП в четверохолмие, больших полушариях и половых железах. Пренатальное воздействие этанола достоверно влияло на активность ФМСФ-КП в гипофизе и половых железах. Взаимодействие влияния пола и пренатальной алкоголизации на активность фермента обнаружено в гиппокампе и половых железах. При пренатальной алкоголизации у самцов не выявлены изменения активности ФМСФ-КП по сравнению с контрольной подгруппой (рис. 13, 14). У самок отмечено повышение активности в гиппокампе и гипофизе и снижение в яичниках по сравнению с интактными самками (рис. 15, 16). У интактных самок активность ФМСФ-КП в стриатуме и половых железах была выше, чем у самцов. У пренатально алкоголизированных самок активность фермента была выше, чем у самцов, в больших полушариях, гипофизе и яичниках (рис. 13-16). Постнатальное воздействие этанола влияло на активность ФМСФ-КП в гипоталамусе, стриатуме, больших полушариях, гипофизе и надпочечниках (табл. 12). При этом у самцов активность ФМСФ-КП была снижена по сравнению с контролем в четверохолмие и всех исследованных железах и имела тенденцию к снижению в остальных тканях (рис. 13-14). У самок активность ФМСФ-КП была снижена по сравнению с контролем в стриатуме, больших полушариях и всех исследованных железах (рис. 15-16). Активность исследуемого фермента достоверно зависела от взаимодействия пола и постнатальной алкоголизации в гиппокампе и четверохолмие (табл. 12). У постнатально алкоголизированных самок активность ФМСФ-КП была выше, чем у КЭ самцов, в четверохолмие и половых железах (рис. 13-14). По данным дисперсионного анализа ферментативную активность зависела от взаимодействия пренатальной и постнатальной алкоголизации в гипоталамусе (табл. 12). Табл. 12. Дисперсионный анализ зависимости активности ФМСФ-КП от пола, пренатальной алкоголизации, постнатальной алкоголизации и их взаимодействия в тканях взрослых животных.
У ЭЭ самцов по сравнению с контрольными самцами ферментативная активность была снижена во всех тканях, кроме стриатума. По сравнению с пренатально алкоголизированными самцами она была снижена во всех тканях, кроме четверохолмия и гипофиза. По сравнению с постнатально алкоголизированными самцами у ЭЭ самцов ферментативная активность была снижена в гипоталамусе, гиппокампе, семенниках, увеличена в гипофизе и не отличалась в остальных тканях (рис. 13-14). У ЭЭ самок по сравнению с контролем ферментативная активность была ниже в больших полушариях и гипофизе и выше в гиппокампе; по сравнению с пренатально алкоголизированными самками активность исследуемого фермента была ниже в больших полушариях и гипофизе; по сравнению с постнатально алкоголизированными самками - выше в гипофизе (рис. 15-16). У ЭЭ самок во всех тканях, кроме четверохолмия и гипофиза, активность ФМСФ-КП стала выше, чем у ЭЭ самцов (рис. 13-16). Таким образом, пренатальная алкоголизация по-разному влияла на активность фермента в разных тканях: активность увеличивалась в гиппокампе и гипофизе, снижалась в яичниках и не изменялась в остальных тканях. Это, вероятно, отражает дезинтегрирующее действие этанола на пептидергические системы, что проявляется, например, в избирательном изменении содержания опиоидных пептидов в разных тканях [69, 153, 263]. Причем, пренатальная алкоголизация по-разному влияла на активность ФМСФ-КП у самцов и самок: активность не изменялась у самцов, но изменялась у самок. Возможно, пренатальное воздействие этанола более существенно изменяет белковый обмен у самок. Постнатальная алкоголизация снижала активность фермента во многих тканях животных обоего пола. Это согласуется с литературными данными о снижении скорости белкового обмена в различных органах и системах при хронической этанольной интоксикации [2, 23, 61, 98, 112]. Также, многие авторы отмечают снижение содержания опиоидных пептидов в отделах мозга [9, 18, 24, 84, 146, 348], что, по их мнению, является отражением процесса адаптации опиоидной системы к избыточной стимуляции, приводящей к снижению функциональной активности этой системы [9, 18, 84]. Но влияние хронической постнатальной алкогольной интоксикации на активность ФМСФ-КП отличалось в разных отделах мозга. Активность фермента достоверно снижалась или имела тенденцию к снижению в стриатуме и больших полушариях животных обоего пола и в четверохолмие самцов по сравнению с нормой. В остальных отделах активность не изменялась. Вероятно, это связано с несогласованным снижением уровней разных нейропептидов [9, 18, 24, 84, 146, 348,] и даже увеличением концентрации некоторых из них [98] под действием хронической алкоголизации в разных отделах мозга. Панченко Л. Ф. с соавт. [80] считают, что с такого дисбаланса в опиоидной системе мозга начинается формирование зависимости и толерантности к алкоголю, далее в процесс вовлекаются сопряженные с ней нейромедиаторные и нейромодуляторные системы мозга, что нарушает слаженную работу мозга в целом. У самцов совместное действие пренатальной и постнатальной алкоголизации вызывали в большинстве исследованных тканей более существенные изменения ферментативной активности, чем каждый из этих видов интоксикации в отдельности. У самок пренатальная алкоголизация в большинстве тканей не приводила к усугублению изменений активности исследуемого фермента при последующем воздействии этанола. Это, возможно, может быть признаком меньшей восприимчивости пептидергических систем у эмбрионально алкоголизированных самок к воздействию этанола в постнальном периоде. Совместное действие пренатальной и постнатальной алкоголизации, по-разному влияя на самцов и самок, вызывало появление половых отличий активности ФМСФ-КП в большинстве тканей, по сравнению с нормой и каждым видом интоксикации в отдельности. ГЛАВА 4. ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ ИССЛЕДОВАНИЯ Несмотря на разностороннее активное изучение проблем алкоголизма, биохимические механизмы многих нарушений, возникающих при этом, остаются мало понятны. Одним из основных направлений является исследование нарушений, возникающих у потомства алкоголиков. В настоящее время не вызывает сомнений, что хроническое потребление алкоголя матерью во время беременности пагубно отражается на всех системах организма, в том числе и на нейрогуморальной [3, 6]. При этом возможны два пути вредного влияния длительной алкогольной интоксикации: непосредственное токсическое воздействие в результате перехода этанола через плаценту [26]; воздействие, опосредованное изменениями, возникающими под влиянием алкоголя в организме матери (нарушением нейроэндокринной регуляции, сдвигами метаболических процессов) [143, 227]. Одним из компонентов нейрогуморальной системы является пептидергическая система. Ее функционирование в значительной мере определяется пептид-гидролазами, к которым относятся КПН и ФМСФ-ингибируемая КП. Как известно, употребление алкоголя во время беременности, приводящее к эмбрио-фетогенезу, проявляется и на протяжении постнатального развития потомства [26, 64, 69, 70, 130, 138, 143]. Поэтому вызывает интерес рассмотрение постнатальных онтогенетических изменений активности пептид-гидролаз в организме эмбрионально алкоголизированных особей. У интактных животных наибольшая активность КПН обнаруживается в тканях с высоким уровнем нейропептидов [103], а именно в гипофизе, в гипоталамусе и четверохолмие. Во многих тканях активность этого фермента достоверно ниже у самок, чем у самцов. Полученные нами данные согласуются с мнением о вовлечении КПН в процессинг регуляторных пептидов [163, 229, 344, 350]. Возможно, у животных разного пола КПН либо вовлекается в процессинг разных пептидов, в частности в ГГГС, либо различается доля ее участия в этом процессе. Наибольшая активность ФМСФ-КП отмечена в гипофизе, надпочечниках и яичниках (рис. 6). В мозге распределение ФМСФ-КП хорошо коррелирует с интенсивностью обмена белка (наиболее высокая в больших полушариях), но не совпадает с распределением нейропептидов [38, 42, 43, 88, 103]. Обнаружено следующее соотношение активности ферментов в тканях интактных взрослых животных и в процессе их развития: КПН ? ФМСФ-КП в отделах мозга и гипофизе крыс обоего пола, а также семенниках взрослых животных. В надпочечниках животных обоего пола и яичниках активность ФМСФ-КП >> КПН. Особенности тканевого и регионального распределния КПН и ФМСФ-КП и отличия их активности в одних и тех же отделах и тканях, вероятно, объясняются, также, некоторыми отличиями в их субстратной специфичности [40, 169, 174, 330]. Активность КПН и ФМСФ-КП у контрольных крыс изменяется с возрастом практически во всех отделах и тканях (рис. 1-8). Дисперсионный анализ показал достоверное влияние возраста во многих случаях (табл. 2, 3, 6, 7). Согласно имеющимся литературным данным [12], в процессе пубертации наиболее существенные изменения отмечаются у самок крыс в инфантильном периоде (с Р8 по Р21), а у самцов - в ювенильном (с Р21 по Р32) и перипубертатном (после Р32) периодах. В отмеченные возрастные периоды происходит формирование важнейших органов и систем. В этих же периодах была отмечена наибольшая активность исследованных нами ферментов. Так, у интактных самцов наибольшая активность КПН отмечалась Р120 в семенниках и в Р28 в остальных тканях (рис. 1, 2, табл. 2), у самок - в Р14 во всех тканях (рис. 3, 4, табл. 3). У интактных животных обоего пола наибольшая активность ФМСФ-КП отмечалась во всех тканях в Р14, а также в надпочечниках в Р0 и в яичниках в Р120 (рис. 5-8, табл. 6, 7). Отличие полового созревания у самок и самцов в значительной степени обусловлено разным содержанием половых гормонов, регуляторных пептидов, в частности гипоталамических факторов, регулирующих половую функцию [12]. Этим можно объяснить результаты нашего исследования, показывающие различие в активности изучаемых ферментов (КПН и ФМСФ-КП) между интактными самками и самцами, как в мозге, так и в периферических тканях. Причем наибольшие (при достоверном влиянии пола) половые отличия активности КПН у интактных животных отмечены в гипофизе, надпочечниках, половых железах, ФМСФ-КП - в гипофизе и половых железах. Результаты нашего эксперимента отметили сходство активности КПН и ФМСФ-КП в гипофизе, отделах мозга и их возрастной динамики в отделах мозга взрослых интактных животных. В надпочечниках и половых железах активность КПН отличалась от ФМСФ-КП. Возрастная динамика активности обоих ферментов в отделах мозга отличалась от периферических тканей и различалась между семенниками и яичниками. В надпочечниках и половых железах возрастная динамика активности КПН отличалась от ФМСФ-КП. Согласно данным корреляционного анализа (табл. 13), в отделах мозга животных обоего пола разного возраста отмечена высокая положительная корреляция активности КПН и ФМСФ-КП. В гипофизе, надпочечниках и половых железах корреляции между ними нет. Вероятно, все это объясняется тем, что КПН и ФМСФ-КП выполняют сходные функции в отделах мозга и разные - в периферических тканях: в отделах мозга у особей обоего пола (но особенно у самок) КПН и ФМСФ-КП примерно в одинаковой степени вовлекаются в процессинг пропептидов; в периферических тканях (яичниках и надпочечниках) ФМСФ-КП, в отличие от КПН, играет более существенную роль в процессинге регуляторных пептидов; Табл. 13. Коэффициенты корреляции между активностью КПН и ФМСФ-КП в тканях самцов и самок в процессе индивидуального развития (достоверность корреляции * - р < 0,05; * * - р < 0,01; * * * - р < 0,001).
в периферических тканях ФМСФ-КП также участвует в катаболизме белка. в процессинге гипофизарных пептидов у самцов участвует преимущественно КПН; При влиянии пренатальной алкоголизации наблюдается нарушение возрастной динамики изменения активности КПН и ФМСФ-КП во многих тканях животных разного пола. Так, если у интактных животных пики уровней ферментативной активности совпадали с периодами формирования важнейших органов и систем [12], то у эмбрионально алкоголизированных такой зависимости, как правило, не наблюдалось. Причем значительные изменения активности ферментов обнаружены у животных обоего пола в Р0. Это, вероятно, связано с эффектом абстинентного синдрома, возникающего у самого новорожденного и у его матери, что также отражается на его состоянии [64, 130]. В последующих периодах такие значительные изменения ферментативной активности отмечались реже, возможно, из-за развивающихся компенсаторных метаболических механизмов [231]. В норме в процессе индивидуального развития организма отмечается изменение содержания различных биологически активных пептидов как в мозге, так и в периферических тканях [25, 52, 55, 76, 101, 118, 119, 158, 159, 162, 181, 247, 254, 266, 267, 275, 307, 310, 328, 342, 347, 349, 351]. При этом в разные возрастные периоды происходят существенные изменения соотношений между уровнями активных пептидов и их предшественников [266], или соотношений между уровнями пептидов, происходящих из одного предшественника [181, 310]. Что, по мнению авторов, свидетельствует об изменении специфичности процессинга предшественников в ходе индивидуального развития. Также высказывается мнение [353], что возрастные изменения уровней регуляторных пептидов связаны с изменениями в функционировани и ферментных систем, участвующих в их синтезе и деградации [129, 179, 180, 258, 259, 278, 326], в том числе и ФМСФ-КП [100]. Пренатальная алкоголизация проявляется в разных возрастных периодах в изменении уровней таких важных в патогенезе алкоголизма пептидов, как опиоидных пептидов в отделах мозга [69, 153, 263]. Имеются также разрозненные данные о нарушении содержания и функционирования других биологически активных веществ в разные возрастные периоды у пренатально алкоголизированных особей [6, 26, 64, 130, 265]. Очевидно, что изменение возрастной динамики активности КПН и ФМСФ-КП у эмбрионально алкоголизированных особей отражает один из механизмов опосредованного нарушения содержания активных пептидов во время важнейших пубертатных периодов и, следовательно, нарушение развития организма, отмечающегося у потомков алкоголиков [6, 26, 64, 130]. Достоверное изменение активности КПН и ФМСФ-КП во всех исследованных тканях у крыс обоего пола разного возраста, подвергнутых пренатальной алкоголизации, происходит преимущественно в сторону снижения. Исключение составляет активность КПН у самок в гипофизе и гипоталамусе и ФМСФ-КП в гипофизе в возрасте Р120, где активность ферментов увеличивается по сравнению с интактными животными. Сниженная активность исследованных ферментов, возможно, является одной из причин отмечанного у наследственно предрасположенных к алкоголизму животных меньшего содержания Met-энкефалина и в-эндорфина [76]. Установлено, что введение таким животным этанола повышает уровень данных опиоидов [76]. Предполагают, что сниженные уровни некоторых эндогенных опиоидов обуславливают влечение к этанолу, как фактору, ведущему к образованию в мозге опиоидов, т. е. к нормализации гуморальных систем вознаграждения. С этим согласуются феномены снятия абстиненции и некоторого снижения влечения к алкоголю при введении извне опиоидных нейропептидов, а также некоторых ингибиторов протеолитического распада опиоидных пептидов в организме [76]. Увеличение активности КПН в гипофизе и гипоталамусе и ФМСФ-КП в гипофизе взрослых самок крыс, очевидно, аналогично реакции организма на стресс. Многие авторы относят алкоголизацию к стрессирующим факторам и отмечают сходство биохимических изменений при алкогольной интоксикации и классических видах стресса (иммобилизационном, эмоционально-болевом, звуковом и т. д.) [27, 31, 32, 45, 99, 128, 295, 341]. При этих воздействиях наблюдается увеличение содержания биологически активных пептидов в гипофизе и гипоталамусе: АКТГ, в-эндорфина, рилизинг-факторов, энкефалинов, вещества Р и т. д. [3, 80, 98, 228, 296, 297]. Они вызывают каскад биохимических реакций, подготавливающих организм к воздействию стрессорного фактора [32, 85, 99]. Вероятно, повышение активности КПН в гипофизе и гипоталамусе и ФМСФ-КП в гипофизе взрослых самок крыс связано с увеличением синтеза указанных стресс-пептидов. Это также подтверждается тем, что КРФ, увеличивающих секрецию АКТГ и в-эндорфин-подобных пептидов, увеличивает и синтез мРНК препрокарбоксипептидазы Н [300]. Интересно, что в процессе развития (Р0 - Р45) не отмечено увеличения ферментативной активности в указанных (гипофиз и гипоталамус) или других тканях пренатально алкоголизированных животных. Вероятно, увеличение активности ферментов, носящее адаптационный характер, стало возможным только после сформированности всех органов, систем и метаболических процессов организма. Наблюдающееся в некоторых тканях при пренатальной этанольной интоксикации различное и/или разнонаправленное изменение активности КПН и ФМСФ-КП, или изменение активности только одного из ферментов, может быть одной из причин нарушения соотношения уровня разных регуляторных пептидов в этих отделах. В частности, имеются данными об избирательном изменении содержания энкефалинов в разных регионах мозга при пренатальном воздействии этанола: снижении количества Met- и Leu-энкефалинов в гипоталамусе без изменения в коре и гиппокампе [69], увеличении количества Met- и Leu-энкефалинов в бледном шаре без изменения в гипофизе [13, 24, 57, 69, 263]. Известно, также о разном содержании энкефалинов в мозге предрасположенных к алкоголизму животных: снижено содержания Met-энкефалина и повышено - Leu-энкефалина [24, 76]. Увеличение активности КПН у самок в гипофизе и гипоталамусе и ФМСФ-КП в гипофизе и достоверное снижение (или тенденция к снижению) активности в половых железах и надпочечниках, возможно, связано (или является одной из причин) с изменением функционирования ГГГС и ГГНС. При пренатальной алкоголизации в этих системах отмечается нарушение обратной связи [177, 178, 182, 224, 282]. В норме наблюдаются половые отличия активности изучаемых ферментов и в мозге и в периферических тканях. Пренатальная алкоголизация, зачастую по-разному изменяя активность этих ферментов, приводит к нарушению этого соотношения. В гипофизе же алкоголизированных самок в возрасте Р120 активность КПН и ФМСФ-КП даже выше, чем у самцов, тогда как у контрольных животных, наоборот. Известно, что пренатальное воздействие этанола нарушает репродуктивную функцию, изменяет содержание половых гормонов и нейропептидов, регулирующих их секрецию [239, 265, 322, 335]. Известно, также, что активность КПН и ФМСФ-КП зависит от половых гормонов [88, 101]. Таким образом, зависящее от пола изменение активности ферментов у пренатально алкоголизированных особей и изменение их соотношения у самок и самцов, вероятно, отражает один из механизмов нарушения развития и функционирования половой системы. Приведенные данные, полученные в нашем эксперименте, об изменении активности КПН и ФМСФ-КП и о нарушении их возрастной динамики при пренатальной алкоголизации, вероятно, свидетельствует об участии этих ферментов в патогенезе алкоголизма, и отражают нарушение обмена регуляторных пептидов. Нарушения проявляются как у взрослых животных, так и на отдельных возрастных этапах, когда происходит развитие важнейших органов и систем. При последующей хронической алкоголизации взрослых животных обоего пола, перенесших воздействие этанола в эмбриональном периоде, отмечается изменение активности КПН в большем количестве исследованных тканей, чем у животных, подвергнутых только пренатальной или только постнатальной интоксикации. У самцов совместное действие пренатальной и постнатальной алкоголизации вызывали в большинстве исследованных тканей более существенные изменения активности обоих ферментов, чем каждый из этих видов интоксикации в отдельности. У самок пренатальная алкоголизация в большинстве тканей не приводила к усугублению изменений активности КПН и ФМСФ-КП при последующем воздействии этанола. Это, возможно, может быть признаком меньшей восприимчивости пептидергических систем эмбрионально алкоголизированных самок к воздействию этанола в постнальном периоде. Половые отличия изменения активности ферментов обмена регуляторных пептидов при алкоголизации согласуется с данными теста открытого поля (табл. 7). Наибольший уровень поведенческой активности отмечается у ЭК и ЭЭ самок. У самцов ЭК и КЭ подгрупп величина всех или некоторых показателей активности тоже повышена по сравнению с интактными животными, но в меньшей степени. У самцов ЭЭ подгруппы поведенческая активность ниже по сравнению с самцами и самками всех других подгрупп. Т. е, что пренатальная алкоголизация усугубила нарушение поведенческих реакций у взрослых самцов при хроническом воздействии этанола, а на самок такого эффекта не оказала. Совместное действие пренатальной и постнатальной алкоголизации вызывало появление половых отличий активности ФМСФ-КП в большинстве тканей, по сравнению с нормой и каждым видом интоксикации в отдельности. В литературе описываются половые отличия алкогольных эффектов на молекулярном, клеточном, тканевом и органном уровнях [87, 105, 106, 113, 133, 141, 148, 149, 155, 186, 214, 215, 197, 240, 288, 293, 294, 305, 337, 343]. Согласно нашим данным, воздействие этанола по-разному влияет на активность основных карбоксипептидаз в тканях самцов и самок: в некоторых отделах мозга активность КПН у самок выше, чем у самцов, а ФМСФ-КП, наоборот; в периферических тканях чаще активность КПН и ФМСФ-КП выше у самок, чем у самцов. Эти данные, вероятно, отражают роль изучаемых ферментов в формировании полового диморфизма и различие влияния этанола на особей разного пола. Причем это отличие проявляется не только при пренатальной или постнатальной интоксикации, но в большей степени при постнатальной алкоголизации внутриутробно алкоголизированных животных. Согласно полученным данным, хроническая алкоголизация изменяет в тканях соотношение активностей КПН/ФМСФ-КП, что согласуется с данными бо изменении соотношений регуляторных пептидов при влиянии этанола [3, 9, 18, 24, 80, 84, 98, 146, 228, 276, 297, 348]. Причем, если пренатальная алкоголизация нарушает соотношение активности изучаемых ферментов в некоторых тканях самцов и во всех исследованных тканях самок, то постнатальная алкоголизация этих животных вызывает изменение соотношения активностей ферментов практически во всех тканях животных обоего пола и в большинстве случаев сильнее, чем только пренатальная алкоголизация. Таким образом, пренатальная алкоголизация приводит к тому, что активность изучаемых ферментов обмена регуляторных пептидов (КПН и ФМСФ-КП) не только оказывается измененной у взрослых животных, но и влияет на их реакцию при последующем хроническом воздействии этанола в постнатальном периоде. Причем эта реакция отличается у самок и самцов. Механизмы регуляции основных карбоксипептидаз мало изучены. Но уже общепринято, что пренатальное воздействие этанола вызывает нарушение структуры и функционирования генетического аппарата клеток [8, 21, 238]. В случае КПН имеются литературные данные, позволяющие обсуждать эти механизмы. В структуре гена КПН обнаружены многочисленные тканеспецифичные регуляторные участки, влияющие на уровень экспрессии гена фермента [157, 218, 220, 237, 316]. Представляется вероятным, что активность КПН при пренатальном воздействии этанола регулируется на уровне экспрессии гена. Подтверждением этого можно считать отсутствие влияния этанола на активность КПН in vitro [20], а также отсутствие данных о реальных механизмах регуляции активности зрелой формы фермента in vivo [34, 167, 187, 218, 219] и на уровне процессинга препроформы КПН [34]. Обнаружена аналогичная генетическая регуляция активности других ферментов, в частности, ферментов обмена самого этанола [8, 15, 22, 107, 238], ферментов катехоламинергической системы [331]. Такой же механизм регуляции можно предположить и для ФМСФ-КП. Можно предположить, что воздействие пренатальной алкоголизации может проявляться и на уровне экспрессии генов разных форм ферментов. КПН представлена в виде растворимой и мембраносвязанной форм [33, 37, 44, 49, 121, 145, 150, 161, 166, 167, 188, 193, 200, 205, 206, 270, 285, 286, 318, 325, 330, 338, 350]. Активность указанных форм отличается [44, 49, 145, 188, 193, 200, 205, 206, 325, 330, 350]. Отличается и соотношение этих форм в норме в разных тканях. Например, в в-клетках поджелудочной железы, хромафинных клетках надпочечников и гипофизе преобладает растворимая форма, а в мозге - мембраносвязанная [161, 285]. Для ФМСФ-КП также известны изоформы, отличающиеся региональным распределением [38, 42, 43, 88, 101, 102]. В структуре ДНК обнаружен участок, кодирующий последовательность 15-20 гидрофобных аминокислот с N-конца КПН [219, 220, 253, 255, 300]. Считается, что именно этой последовательностью мембраносвязанная форма этого фермента отличается от растворимой формы и при ее помощи связывается с мембраной [166, 270, 338]. Возможно, при нарушении экспрессии разных форм КПН и ФМСФ-КП происходит изменение содержания указанных форм и их соотношение. Кроме того, можно предположить механизм воздействия эмбриональной аклоголизации на активность указанных форм через изменение состояния мембран. Пренатальная алкоголизация изменяет содержание и распространение плазменных и мембранных гликопротеинов [191, 208]. Очевидно, что это влияет на строение мембран и, как следствие, на функционирование мембраносвязанных ферментов. Аналогичное воздействие уже считается доказанным при влиянии острого, хронического этанола и/или стресса на активность КПН. Так, этанол (в разных дозах) и иммобилизационный стресс при индивидуальном и совместном воздействии вызывают различные изменения активности растворимой и мембраносвязанной КПН в гипофизе, гипоталамусе, среднем мозге, стриатуме, гиппокампе и сером веществе крыс [33]; хроническое потребление этанола вызывает снижение активности растворимой и мембраносвязанной форм КПН в коре больших полушарий, снижение активности растворимой и повышение мембраносвязанной форм в стриатуме [17]. Возможно, пренатальное воздействие этанола также по-разному изменяет активность растворимой и мембраносвязанной формы изучаемых ферментов. Кроме приведенных наиболее вероятных механизмов воздействия пренатальной алкоголизации на активность изучаемых ферментов можно обсудить существование и иных способов регуляции их активности. Так, в случае КПН в литературе обсуждается зависимость ее активности от продуктов реакции - физиологически активных пептидов. Пренатальная алкоголизация, изменяя уровень регуляторных пептидов (АКТГ, КРФ, опиоидов, ПОМК и т. д.) [64, 69, 114, 153, 177, 182, 263, 282], возможно, тем самым, влияет на активность КПН. Для ФМСФ-КП нет данных о такой зависимости. Для КПН и ФМСФ-КП известна зависимость их активности от половых гормонов [41, 88, 101, 102]. Пренатальная алкоголизация влияет на содержание этих гормонов [239, 265, 322], что, возможно, отражает один из способов воздействия на активность этих ферментов. Можно предположить регуляцию активности ферментов изменением конформации молекулы, приводящим к изменению сродства к субстрату. В частности, это можно предположить для КПН. Отсутствие различий в значениях Кm растворимой и мембраносвязанной форм этого фермента предполагает, что такое изменение не связано с превращением мембраносвязанной формы в растворимую [188, 193, 200, 205, 206, 325, 330]. Ацетальдегид - продукт окисления этанола - благодаря наличию чрезвычайно реакционноспособного карбонила взаимодействует с аминогруппами аминокислот, входящими в состав полипептидов, модифицируя белки, что влечет за собой изменение функций молекул и структур клетки, в которые они входят. Существенно, что связывание ацетальдегида характеризуется отсутствием специфичности, так как осуществляется в результате неферментных реакций [21]. Известно, что ацетальдегид модифицирует белки сыворотки крови, белки и фосфолипиды клеточных мембран, нарушает биогенез ферментных систем мембран и сыворотки крови, приводит к образованию межмолекулярных сшивок, вызывает деградацию некоторых высокомолекулярных белковых структур [21, 96, 117, 152, 223, 245]. Также, ацетальдегид неблагоприятно влияет на основные процессы посттрансляционной модификации белков: ацелирование, фосфорилирование, метилирование, из-за чего извращаются регуляторные эффекты гормонов и нейромедиаторов [77]. Возможно, этанол, вводимый во внутриутробный период, приводит к нарушению структуры, а, значит, и свойств, исследованных нами ферментов. Обобщая результаты нашего эксперимента и литературные данные, можно заключить, что КПН и ФМСФ-КП участвуют в патогенезе алкоголизма и в формировании зависимости у потомства алкоголиков. Соответствие полученных нами данных об изменениях активности ферментов с литературными данными об изменениях уровней нейропептидов и белковом обмене при изученных воздействиях позволяет предположить возможность использования определения активности этих ферментов для исследования изменений метаболизма регуляторных пептидов при физиологических и патологических состояниях организма. Это может иметь важное значение для медицины, так как позволит, контролируя активность ферментов, влиять на биосинтез биологически активных пептидов. С учетом влияния пренатальной алкоголизации на активность изучаемых ферментов в процессе развития животных, при последующем хроническом воздействии этанола в постнатальном периоде, и отличия изменений ферментативной активности при указанных воздействиях на самок и самцов, предложена гипотетическая схема одного из возможных механизмов формирования предрасположенности к алкоголизму у пренатально алкоголизированных особей с участием исследованных ферментов.
ВЫВОДЫУ интактных животных наибольшая активность карбоксипептидазы Н обнаруживается в тканях с высоким уровнем нейропептидов, а именно в гипофизе, гипоталамусе и четверохолмии, что свидетельствует о вовлечении этого фермента в процессинг регуляторных пептидов. Во многих тканях активность этого фермента достоверно ниже у самок, чем у самцов. Наибольшая активность ФМСФ-ингибируемой карбоксипептидазы отмечается в гипофизе, надпочечниках и яичниках контрольных крыс. В мозге распределение ФМСФ-ингибируемой карбоксипептидазы хорошо коррелирует с интенсивностью обмена белка (наиболее высокая в больших полушариях), но не совпадает с распределением нейропептидов. Активность данного фермента меньше зависит от пола и взаимодействия пола и возраста, чем активность карбоксипептидазы Н. При наличии достоверной зависимости влияния пола и взаимодействия пола и возраста активность ФМСФ-ингибируемой карбоксипептидазы выше у самок, чем у самцов. В отделах мозга и гипофизе интактных крыс обоего пола в процессе их развития и во взрослом состоянии, а также семенниках взрослых животных активность карбоксипептидазы Н больше или равна ФМСФ-ингибируемой карбоксипептидазы. В надпочечниках животных обоего пола и яичниках активность ФМСФ-ингибируемой карбоксипептидазы существенно выше, чем карбоксипептидазы Н. Активность карбоксипептидазы Н и ФМСФ-ингибируемой карбоксипептидазы у контрольных крыс изменяется с возрастом практически во всех отделах и тканях. Причем наибольшая активность обоих ферментов отмечается, в основном, у самцов в ювенильном и перипубертатном периодах, а у самок - в инфантильном периоде. Возрастная динамика активности обоих ферментов у интактных животных различается в отделах мозга и периферических тканях, а также в семенниках и яичниках. В надпочечниках и половых железах возрастная динамика активности карбоксипептидазы Н отличается от ФМСФ-ингибируемой карбоксипептидазы. В отделах мозга животных обоего пола разного возраста отмечается высокая положительная корреляция активности карбоксипептидазы Н и ФМСФ-ингибируемой карбоксипептидазы. В гипофизе, надпочечниках и половых железах корреляции между ними нет. Пренатальная алкоголизация влияет на активность карбоксипептидазы Н и ФМСФ-ингибируемой карбоксипептидазы в тканях крыс. Причем в случае карбоксипептидазы Н это влияние более выражено, чем в случае ФМСФ-ингибируемой карбоксипептидазы, как в период полового созревания, так и у взрослых животных. У пренатально алкоголизированных животных обоего пола разного возраста активность карбоксипептиддазы Н и ФМСФ-ингибируемой карбоксипептидазы во многих тканях ниже, чем в норме. Исключение составляет активность карбоксипептидазы Н в гипофизе и гипоталамусе и ФМСФ-ингибируемой карбоксипептидазы в гипофизе у взрослых самок, где ферментативная активность выше по сравнению с контролем. Пренатальное воздействие этанола нарушает возрастную динамику активности карбоксипептидазы Н и ФМСФ-ингибируемой карбоксипептидазы в большинстве тканей крыс обоего пола. У эмбрионально алкоголизированных животных ферментативная активность меньше зависит от возраста, чем у интактных. Очевидно, изменение возрастной динамики активности исследованных ферментов у эмбрионально алкоголизированных особей отражает один из механизмов опосредованного нарушения содержания активных пептидов во время важнейших пубертатных периодов и, следовательно, нарушение развития организма, отмечающегося у потомков алкоголиков. При пренатальной алкоголизации изменяются половые отличия активности исследованных карбоксипептидаз в некоторых тканях животных разного возраста. При этом ферментативная активность, особенно в случае карбоксипептидазы Н, меньше зависит от пола по сравнению с контрольными группами. В некоторых тканях при пренатальной этанольной интоксикации наблюдается различное и/или разнонаправленное изменение активности карбоксипептидазы Н и ФМСФ-ингибируемой карбоксипептидазы, или изменение активности только одного из ферментов. Это может быть одной из причин отмечающегося нарушения соотношения уровня разных регуляторных пептидов. У самцов совместное действие пренатальной и постнатальной алкоголизации вызывает в большинстве исследованных тканей более существенные изменения активности карбоксипептидазы Н и ФМСФ-ингибируемой карбоксипептидазы, чем каждый из этих видов интоксикации в отдельности. У самок пренатальная алкоголизация в большинстве тканей не усиливает изменение активности обоих ферментов при последующем постнатальном воздействии этанола. Совместное действие пренатальной и постнатальной алкоголизации вызывает появление половых отличий активности ФМСФ-ингибируемой карбоксипептидазы в большинстве тканей, по сравнению с нормой и с каждым видом интоксикации в отдельности. С учетом влияния пренатальной алкоголизации на активность изучаемых ферментов в процессе развития животных, при последующем хроническом воздействии этанола в постнатальном периоде, и отличия изменений ферментативной активности при указанных воздействиях на самок и самцов, предложена гипотетическая схема одного из возможных механизмов формирования предрасположенности к алкоголизму у пренатально алкоголизированных особей с участием исследованных ферментов. ЛИТЕРАТУРА1. Азарян А.В. Пептидгидролазы нервной системы и их биологические функции - Ереван, Айастан, 1989, - 208 с. 2. Актушина Г. А., Лютикова Т. М. // Структурные основы и регуляция компресаторно - приспособительных реакций. - Омск, 1986. - с. 28. 3. Алиев Н. А. Нейрогормоны и алкоголизм. // Пат. Физиол. Экспер. Терапия. - 1989. - 5, №5. - С. 85-90. 4. Андронова Л. М. Биологический механизм и фармакотерапия экспериментального алкоголизма в зависимости от половых отличий: Автореф. дис… док. мед наук. - М., 1989. 36 с. 5. Анохин И.К. Биология и нейрофизиология условного рефлекса. - М.: Медицина, 1968. - 547 с. 6. Анохина И.П. Нейро-гуморальные основы влияния алкоголя на потомство // Тез. докл. ХV съезда Всесоюз. физиол. общ-ва им. И.П.Павлова. - Л., 1987. - С. 298-300. 7. Анохина И.П., Балашов А.М., Коган Б.М., Панченко Л.Ф. Роль опиатной системы в механизмах формирования алкогольной зависимости // Вопр. нарк. - 1989. № 3. - С. 3-1. 8. Анохина И.П., Векшина Н.Л., Кузнецова М.Н,, Овчинникова Л.Н., Станишевская А.В., Христолюбова Н.А., Шамакина И.Ю. Некоторые биологические механизмы врожденной предрасположенности к алкоголизму // Физиол. жур. им И.М. Сеченова. - 1992. - 78, № 12. - С. 30-38. 9. Анохина М. П. Роль опиатной системы в механизмах формирования алкогольной зависимости. // Вопр. наркол. - 1989. №3. - С. 3-11. 10. Ашмарин И.П., Каменская М.А. Нейропептиды в симпатической передаче // Итоги Н. и Т. (ВИНИТИ. Сер. Физиология человека и животных). - 1988. - 34, 184 с. 11. Бабаян Э. А., Гонопольский М. Х. Наркология. - М.: Медицина, 1987 - 335 с. 12. Бабичев В.Н. Нейроэндокринный контроль процессов пубертации // Усп. совр. биол. - 1994. - 114, № 3. - С. 330-344. 13. Балаклаавский А.И., Маслова И.В., Петренко С.В., Суриков П.М. Содержание энкефалинов и циклических нуклеотидов в структурах мозга крыс в различные стадии формирования и развития алкогольной зависимости // 1986. № 3. - С. 291-295. 14. Балаклевский А. И., Гесина Л. В., Гурло И. Б. и др. Механизмы повышения содержания продуктов перекисного окисления липидов и активности каталазы в плазме крови больных хроническим алкоголизмом, тканях животных при экспериментальном алкоголизме и лечебного действия апоморфина тетурама. Обоснование мембранотропной терапии алкоголизма. // Респуб. межвед. науч. работа. Алкогольная интоксикация и зависимость. Механизмы развития, диагностика, лечение: - Минск: «Беларусь», - 1988. - С. 116-144. 15. Бардиша Л. Р., Сатановская В. И. Метаболическая адаптация к алкоголю у крыс, различающихся по предпочтению этанола воде // Вопр. мед. химии - 1999. № 2 - С. 45-48. 16. Бейрд Д.Т. Яичник // Гормональная регуляция размножения у млекопитающих. - М.: Мир, 1987, - С. 118-144. 17. Беляев Н. А., Генгин М. , Годына С. В., Калихевич В. Н., Панченко Л. Ф. Активность энкефалинконвертазы в отделах мозга крыс при алкогольной интоксикации // Вопр. мед. химии. 1988. 34, № 4. - С. 118-122. 18. Беляев Н.А., Балакирева Н.Н., Брусов О.С., Панченко Л.Ф. Влияние этанола на энкефалинергическую опиоидную систему мозга крыс // Биохимия - 1984. - 49, № 9. - С. 1425-1430. 19. Беляев Н.А., Брусов О.С., Панченко Л.Ф. Влияние хронического потребления алкоголя на активность энкефалиназы А в стриатуме, гиппокампе и среднем мозге крыс // Вопр. мед. химии - 1983. - 29, № 1. - С. 102-110. 20. Беляев Н.А., Генгин М.Т., Годына С.В., Калихевич В.Н., Панченко Л.Ф. Активность энкефалинконвертазы в отделах мозга крыс при алкогольной интоксикации // Вопр. мед. хим. - 1988. № 4. - С. 118-120. 21. Божко Г. Х., Волошин П. В. Действие этанола на белки тканей и сыворотки крови человека и животных. // Усп. совр. биол. - 1989. - 108, № 1 (4). - С. 52-65. 22. Бородкин Ю. С., Усатенко М. С., Петрова П. А. Фармакология - клинике. // Сборник научных трудов под ред. Ю. С. Бородкина, - 1988. - С. 44-45. 23. Бородкин Ю. С., Усатенко М. С., Разумовская Н. И. // Алкоголизм и наследственность. - Л: 1987. - с. 52. 24. Буров Ю.В., Ведерникова К.М. Нейрохимия и фармакология алкоголизма. // М. Мед. - 1985. 240 с. 25. Бурчинский С. Г., Фролькис М.В. Нейропептиды при старении // Нейрохимия. - 1987. - 6, № 2, - С. 269-281. 26. Бутова О.А. Функциональное состояние гипоталамо-гипофизарно-адренокортикальной системы потомства при воздействии алкоголем на организм матери: Автореф. дис….канд. мед. наук. - М., 1985. -22 с. 27. Венедиктова Н.Н., Борисова И.П., Орехов С.Н. Является ли этанол стрессогенным фактором для крыс со сформированной алкогольной мотивацией? 1989. № 4. - С. 456-458. 28. Вернигора А. Н., Генгии М. Т., Щетинина Н. В., Никишин И. И. Сравнение длительного воздействия этанола, транквилизаторов и эмоционального стресса на активность некоторых ферментов метаболизма нейропептидов. // Научно-практическая конфер. - СПб, 1996. - С. 26-30. 29. Вернигора А. Н., Генгин М. , Макарова В. В. Влияние стрессовых факторов на активность карбоксипептидазы Н в отделах головного мозга крыс // Укр. биохим. журн. - 1992. - 64. № 2. - С. 45-49. Н124. 30. Вернигора А. Н., Генгин М. , Никишин Н. Н. Об участии некоторых ферментов обмена нейропептидов в механизмах эмоционального стресса // Физиол. журн. - 1995. - 81. № 5. - С. 103-112. 31. Вернигора А.Н. Исследование роли ферментов обмена нейропептидов в механизмах эмоционального стресса и формирования зависимости от этанола. 32. Вернигора А.Н., Генгин М.Т. Влияние этанола на активность карбоксипептидазы Н в гипофизе и некоторых отделах головного мозга крыс при различных стрессирующих воздействиях // Физиол. жур. им. Сеченова - 1993. - 79, № 3. С 34-37. ХЭ208, 33. Вернигора А.Н., Генгин М.Т. Влияние этанола на активность растворимой и мембрано-связанной карбоксипептидазы Н в отделах головного мозга крыс при иммобилизационном стрессе. // Вопр. мед. химии. - 1994. - 40. № 1. - С. 54-56. 34. Вернигора А.Н., Генгин М.Т. Механизмы регуляции активности и биологическая роль карбоксипептидазы Н - фермента процессинга нейропептидов // Биохимия. - 1995. -60, № 12. - С. 1491-1497. 35. Вернигора А.Н., Генгин М.Т. Протеолитические ферменты: субклеточная локализация, свойства и участие в обмене нейропептидов // Биохимия - 1996. - 61, № 5. - С. 771-785. 36. Вернигора А.Н., Генгин М.Т. Субклеточная локализация карбоксипептидазы Н в сером веществе головного мозга кошки // Укр. Биохим. журнал.-1992. -64, № 2. - С. 45-49. 37. Вернигора А.Н., Генгин М.Т., Никишин Н. Н. Очистка и физико-химические свойства растворимой карбоксипептидизы Н из серого вещества головного мозга кошки // Биохимия. - 1992. - 57, № 11. - С. 1712-1719. 38. Вернигора А.Н., Генгин М.Т., Салдаев Д.А., Щетинина Н.В. Распределение активности фенилметилсульфонилфторид-ингибируемой карбоксипептидазы в нервной ткани котов // Нейрохимия - 1997. - 14, № 4. - С. 423-425. 39. Вернигора А.Н., Никишин Н.Н., Генгин М.Т. Влияние глюкортикоидов на активность растворимой и мембраносвязанной форм карбоксипептидазы Н in vivo // Укр. биохим. журн. - 1995. - 67, № 6. - С. 93-98. 40. Вернигора А.Н., Никишин Н.Н., Генгин М.Т. Частичная характеристика фенилметилсульфонилфторид-ингибируемой карбоксипептидазы из головного мозга кошки // Биохимия - 1995. - 60, № 11. - С.1860-1866. 41. Вернигора А.Н., Щетинина Н.В., Генгин М.Т. Исследование активности основных (отщепляющих остатки аргинина и лизина) карбоксипептидаз у крыс разного возраста // Биохимия - 1996. - 61, № 10. - С. 1848-1856. 42. Вернигора А.Н., Щетинина Н.В., Генгин М.Т. Распределение активности ФМСФ-ингибируемой карбоксипептидазы в тканях и отделах головного мозга ежа европейского (Erinaceus europaeus) // Укр. биохим. журн. - 1996. - 68, № 5. - С.118-121. 43. Вернигора А.Н., Щетинина Н.В., Салдаев Д.А., Генгин М.Т. Распределение активности основных карбоксипептидаз в тканях лабораторных животных разных видов // Ж. эволюц. биохим. физиол. - 2002. - 38, № 1. - С. 25-27. 44. Генгин М. Вернигора А. Н. Влияние этанола на активность карбоксипептидазы Н в мозге крыс // Укр. биохим. журн. - 1993. - 65. № 1. - С. 100-103. 45. Генгин М. Т., Вернигора А. Н. Влияние эмоционально-болевого стресса и этанола на карбоксипептидазо-Н-подобную активность в гипофизе и сыворотке крови крыс. // Вопр. мед. химии. - 1994. - 40, №1. - С. 52-54. 46. Генгин М.Т. Особенности структурно-функциональной организации и физико-химические свойства нелизосомальных пептидгидролаз мозга животных: Автореф. дис. … док. биол. наук. - Пенза, 2002. - 35 с. 47. Генгин М.Т., Вернигора А.Н. Новая карбоксипептидаза процессинга энкефалинов нервной ткани животных // Укр. биохим. журн. - 1989. - 61, № 3. - С.62-66. 48. Генгин М.Т., Вернигора А.Н. Ферменты процессинга опиоидных пептидов и методы определения их активности // Укр. биохим. журн. - 1994. - 66, № 2. - С.3-17. 49. Генгин М.Т., Вернигора А.Н., Никишин Н.Н. Влияние эмоционально-болевого стресса на активность КПН - фермента процессинга нейропептидов головного мозга крыс // Физиол. ж. - 1994. - 80, № 3. - С.23-27. 50. Генгин М.Т., Вернигора А.Н., Никишин Н.Н., Керимов В.Ю. Эффект эмоционального стресса на активность карбоксипептидазы Н в отделах головного мозга крыс с различной к нему устойчивостью // Вопр. мед. химии. - 1995. - 41, № 4. - С.8-9. 51. Генкина О.Н., Курелла Б. Некоторые нейрофизиологические аспекты действия алкоголя на центральную нервную систему // Вопр. наркол. - 1988. № 4. - С. 38-40. 52. Гомазков О. А. Функциональная биохимия регуляторных пептидов. - М.: Наука. 1993, 160 с. 53. Гомазков О. А., Панфилов А. Д., Комиссарова Н. В., Ростовцев А. П. Влияние длительного потребления этанола на физиологическое состояние и изменения активности пептидаз мозга у мурицидных (агрессивных) крыс // Журн. высш. нервн. деятельности. - 1992. - 42. № 4. - С. 771-778. 54. Гомазков О. А., Панфилов А. Д., Ростовцев А. П., Комиссарова Н. В., Фомин В. В., Григорьянц О.О. Региональная активность энкефалин- и ангиотензин II - образующих пептидаз мозга и периферических тканей у крыс с различным влечением к этанолу. // Вопр. мед. химии. - 1991. - 37, №4. - С. 33-37. 55. Гомазков О.А. Энзимологические основы физиологического действия регуляторных пептидов // Биологические науки. - 1986, № 2. - С. 13-23. 56. Григорьянц О.О., Гомазков О.А. Энкефалинобразующие ферменты // Вопр. мед. химии. - 1986. - 32, № 3. - С. 15-20. 57. Громова Е.А., Бобкова Н.В., Плакхинас Л.А., Дейгин В.И., Ярова Е.П., Михалева И.И. Роль моноаминергических систем мозга в противоалкогольном действии динорфина и пептида дельта-сна // Физиол. жур. им. Сеченова - 1989. - 75, № 5. - С. 633-636. 58. Груздева К. Н., Высогорский Р. Е., Купор В. Г. Ферменты окисления этанола и его метаболитов при оСтрой алкогольной интоксикации и иммобилизационном стрессе // Вопросы наркологии. - 1991. № 4. - С. 2-4. 59. Гурин В.Н., Сандахов Д.Б., Гурин А.В. Активность протеина головного мозга и мобильных эндогенных ингибиторов протеолиза как фактор формирования функционального состояния организма // Физиология человека. - 1999. - 25, № 1, - С. 71-77. 60. Зилов В.Г., Рогачева С.К., Иванова Л.И. Повышение устойчивости реакции избегания к этанолу на фоне вещества // Бюлл. эксп. биол. мед. - 1991. № 3. - С. 281-284. 61. Казакова П. Б., Хохрина Н. Т. // Ж. Невропат. Психиатрии им. С. С. Корсакова. - 1986. - 88, №7. - С. 1033-1036. 62. Келешева Л.Ф., Судаков К.В. Олигопептиды в механизмах алкогольной мотивации. Новые подходы к изучению алкоголизма, наркоманий и токсикоманий // Международный симпозиум - Гагра, 28-30 марта. 1989. - С. 6-7. 63. Керменгольц Б.М. Основные биохимические механизмы влияния экзогенного этанола на обмен веществ в организме человека // Сборник научных трудов. Этанол и его метаболизм в высших организмах. Якутск. 1990. - С. 106-125. 64. Кирющенков А.П. Алкогольный синдром плода // Алкоголизм и наследственность / Мат-лы межд. симпозиума. - М., 1987. - С. 79-83. 65. Клешева Л. Ф., Судаков К. В. Олигопептиды в механизмах алкогольной мативации. // Новые подходы к лечению алкоголизма, наркоманий и таксикоманий (тез. докл). Междун. симпоз. - Гагра, 1989. - С. 65-66. 66. Колупаев Г. Н., Яковлев В. А. Гормональные нарушения при хронической интоксикации алкоголем. // Ж. Невропат. Псих. им. Корсакова. - 1984. - 11. - С. 1712-1714. 67. Кузин А. М. Структурно - метаболическая теория в радиобиологии. М.: Наука, 1986. - 285 с. 68. Лакин Г.Ф. Биометрия. - М.: Высш. шк., 1990. - 352 с. 69. Майзелис М.Я., Заблудовский А.Л. Содержание энкефалинов в отделах головного мозга крыс, перенесших внутриутробное воздействие этанола // Бюл. Эксп. Биол. Мед. - 1986. - № 3. - С. 311-312. ПЭ87, 70. Майзелис М.Я., Заблудовский А.Л., Шихов С.Н. Особенности поведения и белкового обмена в мозге второго поколения животных, получавших этанол во время беременности // Ж. Невропат психиат. -1989. - 89, № 2. - С. 112-117. 71. Майский А. И., Ведерникова Н. Н., Чистяков В. В., Макин В. В. Биологические основы наркоманий. - М.: Мед., 1982,. - 256 с. 72. Маркель А.Л., К оценке основных характеристик поведения крыс в тесте «открытое поле» // Ж. высш. нервн. деят. - 1981. - ХХХI, № 2. - С. 301-307. 73. Маркель А.Л., Хусаинов Р.А. Метод комплексной регистрации поведенческих и вегетативных реакций у крыс при проведении теста «открытого поля» // Ж. высш. нервн. деят. - 1976. - 26, № 6. - С. 1314. 74. Маркель А.Н., Галактионов Ю.К., Ефимов В.М. Факторный анализ поведения крыс в тесте открытого поля // Ж. высш. нервн. деят. - 1988. - ХХХVIII, № 5. - С. 855-863. 75. Медведев В.И., Миролюбов А.В. Проблема управления функциональным состоянием // Физиология человека. - 1984. - 10, № 5. - С. 761. 76. Нейрохимия / Под. ред. Ашмарина И.П., Стукалова П.В. М.: Издательство Института Биомедицинской химии РАМН. - 1996. 470 с. 77. Островский Ю. М., Cатановская В. И., Садовник М. Н. Биологический компонент в генезе алкоголизма. - Минск: Наука и техника, 1986, - 95 с. 78. Островский Ю. М., Сатановская В. И., Островский С. Ю. и др. Метаболические предпосылки и последствия потребления алкоголя. - Минск: Наука и техника, 1988. 264 с. 79. Панченко Л. Ф., Беляев И. А. Энкефалинергическая опиоидная система и этанол: патогенетическое обоснование новых направлений поиска средств лечения алкоголизма. // Современные проблемы нейропсихофармакологии, принципы патогенетического лечения больных нервными и психическими расстройствами (Тез.докл.). - М, 1984. - С. 147-150. 80. Панченко Л. Ф., Брусов О. С., Беляев И. А. Иследования механизма действия этанола на активность энкефалиазы А мозга крыс. // Биол. экспер. биол. и мед. - 1984. - 47. - С. 691-692. 81. Панченко Л. Ф., Пильмиярова Ф. Н., Радомская В. М. Этанол и атеросклероз. - М.: Медицина, 1987. 128 с. 82. Панченко Л.Ф., Пирожков С. В., Антоненков В. Д. Пероксисомальная ферментативная система окисления этанола. // Биологические и медицинские аспекты алкоголизма: Матер. межд. симпоз. /под ред. акад. АМИ СССР П. В. Морозова / М. - 1984. - С. 137-144. 83. Попова Э.Н. Ультраструктура нейронов сенсомотороной коры у потомства крыс, получавших алкоголь во время беременности // Архив Анат. Гистол. Эмбриол. - 1988. - № 3. - С. 5-8. 84. Пятницкая И. Н. Злоупотребление алкоголем и начальная стадия алкоголизма. - М.: Медицина, 1988. - 288 с. 85. Раевский К.С., Айраксинен М.М., Майский А.И. Влияние этанола на уровень дофамина и его метаболитов в мозге крыс с различной устойчивостью к стрессу // Бюлл. эксп. биол. мед. - 1990. № 4. - С. 362-365. 86. Ростовцев А. В., Григорьянц О. О., Гомазков О. А. Субстраты для исследования энкефалинобразующей карбоксипептидазы в мозге и надпочечниках крысы // Вопр. мед. химии. 1988. 34. - 1. С. 126-129. 87. Салдаев Д.А. Активность основных карбоксипептидаз в тканях мышей при введении тестостерона и прогестерона: Автореф. дис. … канд. биол. наук. - СПб., 2001. - 20 с. 88. Салдаев Д.А. Активность основных карбоксипептидаз в тканях мышей при введении тестостерона и прогестерона: Автореф. дис. … канд. биол. наук. - СПб., 2001. - 20 с. 89. Сатановская О.А. Окисление этанола // Вопр. мед. химии - 1991. - 114, №5. - С. 573-580. 90. Скосырева А.М., Балика Ю.Д., Картамышева В.Е. Влияние этилового алкоголя на развитие эмбриона в эксперименте // Акушерство и гинекология. - 1981. - № 1. -С. 38-40. 91. Сторожок С. А., Панченко Л. Ф., Филиппович Ю. Д., Глушков В. С. Изменения физико-химических свойств биологических мембран при развитии толерантности к этанолу. // Вопр. мед. химии. - 2001. №2. - С. 23-28. 92. Сторожок С.А. Содержание гидроперекисей в липидах, активность супероксидисмутазы и глюкозо-6-фофсатдегидрогеназы эритроцитов при алкогольной интоксикации // Вопр. мед. химии - 1983. - 29, № 6. - С. 31-34. 93. Судаков К.В. Геном и олигопептиды в системных механизмах обучения // Третьи Павловские чтения, Рязань. - 1989. - С. 3. 94. Сухоруков В.С., Тарабрин С. Б. Роль пролактила в регуляции функций мужской гонады // Усп. совр. биол. - 1993. - 113, № 3. - С. 366-376. 95. Тинников А.А. Роль гипоталамо-гипофизарно-надпочечниковой системы в регуляции полового развития // Усп. совр. биол. - 1990. - 110, № 3(6). - С. 419-428. 96. Троицкий Г. В., Багдасарян С. Н. // Вопр. мед. химии - 1987, - 33, №2,. - С. 38-42. 97. Усатенко М. C., Петрова М. А., Матвеева М. М. и др. Динамика активности ферментов - маркеров системного употребления алкоголя в крови больных алкоголизмом // Вопр. наркологии. - 1991. №4. - С. 9-12. 98. Хоха А. М. Угнетение этанолом биосинтеза половых гормонов и гипоталамо-гипофизарно-надпочечниковая система // Вопр. мед. химии - 1994. - 114, №5. - С. 573-580. 99. Чиркова С.К., Войт И.С. Влияние алкоголя на развитие острых эмоционально-стрессорных состояний у обезьян // Жур. высш. нервн. деят. - 1990. - 40, № 3. - С. 585-587. 100. Щетинина Н.В. Активность основных карбоксипептидаз в тканях и отделах мозга крыс в онтогенезе: Автореф. дис….канд. биол. наук. - СПб., 1997 - 20 с. 101. Щетинина Н.В., Вернигора А.Н., Генгин М.Т. Активность основных карбоксипептидаз у крыс разного пола // Укр. биохим. журн. - 1997. - 70, № 3. - С. 110-113. 102. Щетинина Н.В., Вернигора А.Н., Генгин М.Т., Фирстова Н.В. Тканевое и региональное распределение активности фенилметилсульфонилфторид-ингибируемой карбоксипептидазы и других карбоксипептидаз у крыс // Укр. биохим. журн. - 1997. - 70, № 3. - С. 23-28. 103. Эндорфины: Пер. с англ. / Под ред. Э.Коста, М. Трабукки. Перевод Панова М.А.; Под ред. В.Б.Розена - М.: Мир, 1981. - 368 с. 104. Янский Л., Выбирал С. , Романовский А.А., Гурин В.Н Механизм влияния нейропептидов на терморегуляцию // Нейропептиды и терморегуляция / Под ред. В.Н. Гурина, Минск. - 1990. - С. 9. 105. Aasmoe L., Aarbakke J. Sex dependent induction of alcohol-dehydrogenase activity in rats // Biochem. Pharmacol. - 1999. - 57, N 9. - P. 1067-1072. 106. Adams N., Oldham T.D., Briscoe J.T., Hannah J.A., Blizard D.A. Ethanol preference in maudsley and RXNRA recombinant inbred strains of rat // Alcohol - 2001. - 24, N 1. - P. 25-34. 107. Agarwal D. P., Goedde H. W. Aldehyddehydrohenazes of human: genetiсs reason a different sens: tiveness to alсohol // Genet. Biol. Alсoholism. - 1990. - С. 253-261. 108. Aguilardiosdado M., Parkinson D., Corbett J. A., Kwon G., Marshall C. A., Gingerich R. L., Santiago J. V., Mcdaniel M. L. Potential autoantigens in IDDM - expression of carboxypeptidase H and insulin but not glutamatedecarboxylase on the beta-cellsurface // Diabetes. - 1994. - 43, N 3. - P. 418-425. 109. Aird F., Halasz I., Redei E. Ontogeny of hypothalamic corticotropin-releasing factor and anterior pituitary proopiomelanocortin expression in male and female offspring of alcohol exposed and adrenalectomized dams // Alcohol. Clin. Exp. Res. - 1997. - 21, N 9. - P. 1560-1566. 110. Alcalde L., Tonacchera M., Costagliola S., Jaraquemada D., Pujol Borrell R., Ludgate M. Cloning of candidate autoantigen carboxypeptidase H from a human islet library: sequence identity with human brain CPH // J. Autoimmunity. - 1996. - 9, N 4. - P. 525-528. 111. Allan A.M., Weeber E.J., Savage D.D., Caldwell K.K. Effects of prenatal ethanol exposure on phospholipase C- beta-1 and phospholipase A(2) in hippocampus and medial frontal cortex of adult rat offspring // Alcohol. Clin. Exp. Res. - 1997. - 21, N 8. - P. 1534-1541. 112. Alling C., Gustavsson L., Hansson E., Ronnback L. Lipids and fatty acids in membranes from astroglial cells cultured in ethanol-containing media. // Drug. Alсohol. Depend. - 1986. - 18, N 2. - P. 115-126. 113. Almeida O.F.X., Shoaib M., Deicke J., Fischer D., Darwish M.H., Patchev V.K., Gender differences in ethanol preference and ingestion in rats - the role of the gonadal-steroid environment // J. Clin. Invest. - 1998. - 101, N 12. - P. 2677-2685. 114. Angelucci F., Fiore M., Cozzari C., Aloe L. Prenatal ethanol effects on NGF level, NPY and chat immunoreactivity in mouse entorhinal cortex - a preliminary-study // Neurotoxicol. Teratol. - 1999. - 21, N 4. - P. 415-425. 115. Azaryan A.V., Hook V.Y.H. Unique cleavage specificity of prohormone thiol protease related to proenkephalin processing // FEBS Lett. - 1994. - 341, N 2-3. - P. 197-202. 116. Bader M.F., Simon J.P., Sontag J.M,. Langley K., Aunis D. Role of calcium in secretion and synthesis in bovine adrenal chromaffin cells // Adv. Exp. Med. Biol. - 1990. - 269. - P. 93-97. 117. Barry R. E., McGivan J.D. Acetaldehyde alone may initiate hepatocellular damage in acute alcoholic liver disease // Gut. - 1985. - 26, N 10. - P. 1065-1069. 118. Bayon A., Shoemaker W.S., Bloom F.E., Mauss A., Guillemin R. Perinatal development of the endorphin and enkephalincontaining systems in the rat brain // Brain Res. - 1979. - 179. - P. 93-101. 119. Beinfeld M.C., Korchak D.M., Nilaver G., O'Dorisio T.M. The development of motilin, cholecystokinin and vasoactive intestinal polypeptide in the forebrain and hindbrain of the rat, as determined by radioimmuno assay // Der. Brain. Res. - 1983. - 10. - P. 146-150. 120. Bell S. M.,·Reynolds J. G., Thiele T. T., Gan J., Figlewicz D. P., Woods S. C. Effects of third intracerebroventricular injections of corticotropin-releasing factor (CRF) on ethanol drinking and food intake // Psychopharmacology - 1998. V. 139. - P. 128-135. 121. Bellparikh L. C., Eipper B. A., Mains R. E. Response of an integral granule membrane protein to changes in pH. // J. Biol. Chem. - 2001. - 276, N 32. P. 29854-29863. 122. Beresford T., Arciniegas D., Rojas D., Sheeder J., Teale P., Aasal R., Sandberg E., Reite M. Hippocampal to pituitary volume ratio: a specific measure of reciprocal neuroendocrine alterations in alcohol dependence // J. Stud. Alcohol. - 1999. - 60, N 5. - P. 586-588. 123. Bidder M., Weizman R., Fares F., Grel I., Gavish M. Chronic ethanol consumption and withdrawal affects mitochondrial benzodiazepine receptors in rat brain and peripheral organs // Biochem. Pharmacol. - 1992. - 44, N 7. - P. 1335-1339. 124. Birch N.P., Rodriguez C., Dixon J.E., Mezey E. Distribution of carboxypeptidase H messenger RNA in rat brain using in situ hybridization histochemistry: implications for neuropeptide biosynthesis // Brain Res. Mol. Brain Res. - 1990. - 7, N 1. - P. 53-59. 125. Blum H. Alсohol and сentral nervous system peptides. // Supst. Alсohol Aсt. Misuse. - 1983. - 4, N 2-3. - P. 73-78. 126. Bommer M, Nikolarakis K, Noble E.P, Herz A. In vivo modulation of rat hypothalamic opioid peptide content by intracerebroventricular injection of gua-nidinoethylmercaptosuccinic acid (GEMSA) possible physiological role of enkephalin convertase // Brain Res. - 1989. - 492, N 1/2. - P. 305-313. 127. Bonten E.J, Galjart N.J, Willemsen R, Usmany M, Vlak JM, d'Azzo A. Lysosomal protective protein/cathepsin A. Role of the "linker" domain in catalytic activation // Biol Chem. - 1995. - 270, N 44. - P. 26441-26445. 128. Boyadjieva N., Meadows G., Sarkar D. Effects of ethanol consumption on Я-endorphin levels and natural killer cell activity in rats // Ann. New York Acad. Sci. - 1999. N. 885. - P. 383-386. 129. Brust P., Bech A., Kretzschmar R., Bergmann R. Developmental changes of enzymes involved in peptide degradation in isolated rat brain microvessels // Peptides. - 1994. - 15, № 6. - P. 1085-1088. 130. Burd L., Martsolf J.T. Fetal alcohol syndrome variability // Physiol. Behav. - 1989. - 46, N 1. - P. 39-43. 131. Bures E. J., Courchesne P. L., Douglass J., Chen K., Davis M. T., Jones M. T., Jones M. D., Mcginley M. D., Robinson J. H., Spahr C. S., Sun J. L., Wahl R. C., Patterson S. D. Identification of incompletely processed potential carboxypeptidase-E substrates from Cpefat/Cpefat mice. // Proteomics. - 2001. - 1, N 1. P. 79-92. 132. Butters N.S., Gibson M.A.S., Reynolds J.N., Brien J.F. Effects of chronic prenatal ethanol exposure on hippocampal glutamate release in the postnatal guinea pig // Alcohol - 2000. - 21, N 1. - P. 1-9. 133. Carter A., Soliman.M.R.I. Estradiol and progesterone alter ethanol induced effects on м-opioid receptors in specific brain regions of ovariectomized rats // Life Sci. - 1997. - 62, N 2. - P. 93-101. 134. Castoldi A.F., Barni S., Randine G., Costa L.G., Manzo L. Ethanol selectively interferes with the trophic action of NMDA and carbachol on cultured cerebellar granule neurons undergoing apoptosis // Develop. Brain Res - 1998. - 111, N 2. - P. 279-289. 135. Charness M. F. Ethanol and opioid reсeptor signalling // Experientia. - 1989. - 45, N 5. - P. 418-428. 136. Che F. Y., Yan L., Li H., Mzhavia N., Devi L. A., Fricker L. D., Identification of peptides from brain and pituitary of Cpe(Fat)/Cpe(Fat) mice. // Proc. Nat. Acad. Sci. USA. - 2001. - 98, N 17. P. 9971-9976. 137. Chen H. Jawahar S., Qian Y. M., Duong Q. Y., Chan G. Y., Parker A., Meyer J. M., Moore K. J., Chayen S., Gross D. J., Glaser B., Permutt M. A., Fricker L. D. Missense polymorphism in the human carboxypeptlidase-E gene alters enzymatic activity. .// Hum. Mutat. - 2001. - 18, N 2. P. 120-131. 138. Conway S., Ling S.Y., Leidy J.W., Blaine K., Holtzman T., Effect of fetal ethanol exposure on the in vitro release of growth hormone, somatostatin and growth hormone - releasing factor induced by clonidine and growth hormone feedback in male and female rats // Alcohol. Clin. Exp. Res. - 1997. - 21, N 5. - P. 826-839. 139. Cool D.R., Loh Y.P. Carboxypeptidase E is a sorting receptor for prohormones - binding and kinetic studies // Mol. Cell. Endocrinol. - 1998. - 139, N 1-2, P. 7-13. 140. Cool D.R., Normant E., Shen F.S., Chen H.C., Pannell L., Zhang Y., Loh Y.P. Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpe(Fat) mice // Cell. - 1997. - 88, N 1, P. 73-83. 141. Crippens D., White M.L., George M.A., Jaworski J.N., Brunner L.J., Lancaster F.E., Gonzales R.A. Gender differences in blood levels, but not brain levels, of ethanol in rats // Alcohol. Clin. Exp. Res. - 1999. - 23, N 3. - P. 414-420. 142. Dakes M.J., Davis T.P. The ontogeny of enzymes involved in posttranslational processing and metabolism of neuropeptides // Dev. Brain Res. - 1994. - 80, N 1-2, P. 127-136. 143. Daniel M.A., Evans M.A. Quantitative comparison of maternal ethanol and maternal tertiary butanol diet on postnatal development // J. Pharmacol. Exp. Ther. - 1982. - 222, N 2. - P. 294-300. 144. Das B., Sablan E.L., Kilbourne E.J., Fricker L.D. Regulation of carboxypeptidase E by membrane depolarization in PC12 pheochromocythoma cells: comparison with the mRNA's encording other peptide and catecholamine's biosynthetic enzymes // Neurochem. - 1992. - 59, N 6. - P. 2263-2270. 145. Davidson H.W., Hutton J.C. The insulin-secretory-granule carboxypeptidase H: Purification and demonstration of involvement in proinsulin processing // Biochem. J. - 1987. - 245, N 2. - P. 575-582. 146. Davis T. P., Gulling-Berglund A. S., Gillespie T. S., Smith T. L. Ethanol treatment alters Я-endorphin metabolism by purified synaptosomal plasma membranes. // Peptides. - 1987. - 8, N 3. - P. 467-472. 147. Demmer W., Brand K. Carboxypeptidase activity in synaptic vesicles isolated from striatum and cortex of calf brain // Arch. Biochem. Biophys. - 1985. - 239, N 2. - P. 375-378. 148. Devaud L.L., Chadda R., Sex-differences in rats in the development of and recovery from ethanol dependence assessed by changes in seizure susceptibility // Alcohol. Clin. Exp. Res. - 2001. - 25, N 11. - P. 1689-1696. 149. Devaud L.L., Fritschy J.M., Morrow A.L. Influence of gender on chronic ethanol induced alterations in GABA(A) receptors in rats // Brain Res. - 1998. - 796, N 1-2. - P. 222-230. 150. Dhanvantari S., Loh Y. P. Lipid raft association of carboxypeptidase E is necessary for its function as a regulated secretory pathway sorting receptor. // J. Biol. Chem. -2000. - 275, N 38. P. 29887-29893. 151. Dochetry K., Hutton J.C. Carboxypeptidase activity in the insulin secretory granule // FEBS Lett. - 1983. - 162, N 1. - P. 137-141. 152. Dronou A., Lucas D., Powell L.W. // Clin. Chem. - 1985. - 31, N 9. - P. 1543-1546. 153. Druse M.J., Hao H.L., Eriksen J.L. In utero ethanol exposure increases proenkephalin, a precursor of a neuropeptide that Is inhibitory to neuronal growth // Alcohol. Clin. Exp. Res. - 1999. - 23, N 9. - P. 1519-1527. 154. Du X.P., Hamre K.M. Increased cell death in the developing vestibulocochlear - ganglion complex of the mouse after prenatal ethanol exposure // Teratology - 2001. - 64, N 6. - P. 301-310. 155. Dufouil C., Ducimetiere P., Alperovitch A., Sex-differences in the association between alcohol consumption and cognitive performance // Amer. J Epidemol. - 1997. - 146, N 5. - P. 405-412. 156. Dulka J.G., Maler L., Ellis W. Androgen-induced changes in electrocommunicatory behavior are correlated with changes in substance P-like immunoreactivity in the brain of the electric fish Apteronotus leptorhynchus // J. Neurosci. - 1995. - 15, № 3 (Pt.1). - P. 1879-1890. 157. Eipper B.A, Green C.B, Mains R.E. Expression of prohormone processing enzymes in neuroendocrine and non neuro-endocrine cells // Monogr. Natl. Cancer. Inst. - 1992. - 13, P. 163-168. 158. Ekstrom J., Ekman R., Hakanson R., Luts A., Sundler F. Developmental studies on vasoactive intestinal peptide, substance P and caleifonin generelated peptide in salivary glands of postnatal rats // Acta Physiol. Scand. - 1994. - 151, № 1. - P. 107-115. 159. Emson P.C., Gilbert R.F.T., Lorer I., Fakrenkrung J., Sundler F., Schaffalitzky de Muckadell O.B. Development of vasoactive intestinal polypeptide (VIP) containing neurons in the rat brain // Brain Res. - 1979. - 177. - P. 437-444. 160. Feng Y., Reznik S. E., Fricker L. D. Distribution of proSAAS derived peptides in rat neuroendocrine tissues. // Neurosci. - 2001. - 105, N 2. P. 469-478. 161. Fiedorek F.T Jr, Parkinson D. Carboxypeptidase H processing and secretion in rat clonal beta cell lines // Endocrinology. - 1992. - 131, N 3. - P. 1054-1062 162. Foster G.A., Schultzbeng M. Immunohistochemical analysis of the ontogeny of neuropeptide Y immunoreactive neurons in foctal rat brain // Int. J.Dev.Neurosci. - 1994. - 2. - P. 387-407. 163. Fricker L.D. Carboxypeptidase E // Ann. Rev. Physiol. - 1988. - 50. - P. 309-321. 164. Fricker L.D. Neuropeptide biosynthesis: focus on carboxypeptidase processing enzyme // Trends Neurosci. - 1985. - 8, № 5. Р. 210-214. 165. Fricker L.D., Adelman J.P., Douglass J., Thompson R.C, von Strandmann R.P, Hutton J AD. Isolation and sequence analysis of cDNA for rat carboxypeptidase E [EC 3.4.17.10], a neuropeptide processing enzyme // Mol. Endocrinol. - 1989. - 3, N 4. - P. 666-673. 166. Fricker L.D., Das B., Angeletti R.H. Identification of the pH dependent membrane anchor of carboxypeptidase E (EC 3.4.17.10) // J. Biol. Chem. - 1990. - 265, N 5. - P. 2476-2282. 167. Fricker L.D., Devi L. Posttranslational processing of carboxypeptidase E, a neuropeptide processing enzyme, in AtT 20 cells and bovine pituitary secretory granules // J. Neurochem. - 1993. - 61, N 4. - P. 1404-1415. 168. Fricker L.D., Herbert E. Comparison of a carboxypeptidase E-like enzyme in human, bovine, mouse, Xenopus, shark and Aplysia neural tissue // Brain Res. - 1988. - 453, N 1-2. - P. 281-286. 169. Fricker L.D., Plummer T.H., Snyder S.H. Enkephalin convertase: potent, selective and irreversible inhibitors // Biochem. and Biophys. Res. Commun. - 1983. - 11, N 3. - P. 994-1000. 170. Fricker L.D., Reaves B.J., Das B., Dannies P.S. Comparison of the regulation of carboxypeptidase E and prolactin in GH4C1 cells, a rat pituitary cell line. // Neuroendocrinology. - 1990. - 51, N 6. - P. 658-663. 171. Fricker L.D., Rigual R. J., Diliberto E. J. Jr., Viveros O. H. Reflex spanchnic nerve stimulation increases levels of carboxypeptidase-E mRNA and enzymatic activity in the rat adrenal medulla // J. Neurochem. - 1990. - 55, N 2. - P. 461-467. 172. Fricker L.D., Snyder S.H. Enkephalin convertase: purification and charasterization of a specific enkephalin-synthesizing carboxypeptidase localized to adrenall chromaffin granules // Proc. Natl. Acad. Sci. USA. - 1982. - 79. - P. 3886-3890. 173. Fricker L.D., Snyder S.H. Purification and characterization of enkephalin convertase, an enkephaline-synthesizing carboxypeptidase // J. Biol. Chem. - 1983. - 79. P. 33886-3890. 174. Fricker L.D., Supattapone S., Snyder S.H. Enkephalin convertase: a specific enkephalin synthesing carboxypeptidase in adrenal chromaffin granules, brain and pituitary gland // Life Sci. - 1982. - 31. - P. 1841-1844. 175. Friishansen L., Lacourse K. A., Samuelson L. C., Holst J. J. Attenuated processing of proglucagon and glucagon-like peptide-1 in carboxypeptidase E deficient mice. // J. Endocrinol. - 2001. - 169, N 3. P. 595-602. 176. Friksen S.P., Kulkarni A.B. Methanol in normal human breath // Science - 1963. - 141. - P. 639-640. 177. Gabriel K.I., Yu W., Ellis L., Weinberg J. Postnatal handling does not attenuate hypothalamic- pituitary-adrenal hyperresponsiveness after prenatal ethanol exposure // Alcohol. Clin. Exp. Res. - 2000. - 24, N 10. - P. 1566-1574. 178. Gabriel K.I., Weinberg J. Effects of prenatal ethanol exposure and postnatal handling on conditioned taste-aversion // Neurotoxicol. Teratol. - 2001. - 23, N 2. - P. 167-176. 179. Gandarias J.M., Irazusta J., Fernandez D., Silio M., Casis L. Membrane-bound pyroglutamyl-arylamidase activity during the first postnatal month in several rat brain areas // Int. J. Dev. Biol. - 1994. - 38, № 1. - P. 127-129. 180. Gandarias J.M., Ramirez M., Zulaica J., Casis L. Aminopeptidase (arylamidase) activity in discrete areas of the rat brain: Sex differences // Horm. Metab. Res. - 1989. - 5, № 21. - P. 285-286. 181. Genazzani A.R., Faechinetti F., Petraglia F., Pintor C., Bagnoli F., Puggioni R., Corda R. Correlations betneen plasma levels of opioid peptides and adrenal androgens in prepuberty and puberty // J. Steroid. Biochem. - 1983. - 19, № 1. - P. 891-895. 182. Glavas M.M., Hofmann C.E., Yu W.K., Weinberg J. Effects of prenatal ethanol exposure on hypothalamic-pituitary-adrenal regulation after adrenalectomy and corticosterone replacement // Alcohol. Clin. Exp. Res. - 2001. - 25, N 6. - P. 890-897. 183. Glombik M. M., Kromer A., Salm T., Huttner W. B., Gerdes H. H. The disulfide-bonded loop of chromogranin-B mediates membrane-binding and directs sorting from the trans-Golgi network to secretory granules. // EMBO J. - 1999. - 18. 4. P. 1059-1070. 184. Goldstein D. B., Chim Y. H. Interaktion of ethanol with biological membranes. // Fed. Proc. - 1981. - 40, N 7. - P. 2073-2076. 185. Gorenstein C., Snyder S., Tmo distinct enkephalinases solupilizabion, partial purification and separation from angiotensin converting enzyme // Life. Sci. - 1979. - 25. - P. 2065. 186. Graham K., Wilsnack R., Dawson D., Vogeltanz N. Should alcohol consumption measures be adjusted for gender differences // Addiction - 1998. - 93, N 8. - P. 1137-1147. 187. Grigoriants O., Devi L., Fricker L.D. Dopamine antagonist haloperidol increases carboxypeptidase E mRNA in rat neurointer-mediate pituitary but not in various other rat tissues // Mol. Brain Res. - 1993. - 19. - P. 161-164. 188. Grimwood B.G., Plummer T.H. Jr., Tarentino A.L. Carboxypeptidase H. A regulatory peptide-processing enzyme produced by human hepatoma Hep G2 cells // J. Tiolog. Chem. - 1989. - 264, N 26. - P. 15662-15667. 189. Guaza C., Borrell S. Modifications in adrenal hormones response to ethanol by prior ethanol dependence // Pharmacol. Biochem. Behav. - 1985. - 22, N 3. - P. 357-360. 190. Guerri C. Neuroanatomical and neurophysiological mechanisms involved in central nervous system dysfunctions induced by prenatal alcohol exposure // Alcohol. Clin. Exp. Res. - 1998. - 22, N 2. - P. 304-312. 191. Guerri C., Renaupiqueras J. Alcohol, astroglia, and brain development // Mol. Neurobiol. - 1997. - 15, N 1. - P. 65-81. 192. Guest P.C., Arden S.D., Rutherford N.G., Hutton J.C. The posttranslational processing and intracellular sorting of carboxypeptidase H in the islets of Langerhans // Mol. Cell. Endocrinol. - 1995. - 113, N 1, P. 99-108. 193. Guest P.C., Ravazzola M., Davidson H.W., Orci L., Hutton J.C. Molecular heterogeneity and cellular localization of carboxypeptidase H in the islets of Langerhans // Endocrinology. - 1991. - 129, N 2. - P. 734-740. 194. Hall C.S. Emotional behavior in the rat. The relationship between emotionality and ambulatory activity // J. Copm. Physiol. Psychol. - 1936. - 22. - P. 345-352. 195. Hanna W.L., Turbov J.M., Jackman H.L., Tan Fulong, Froelich C.J. Dominant chymotrypsin-like esterase activity in human lymphocyte granules is mediated by the serine carboxypeptidase called cathepsin A-like protective protein // Immunol. - 1994. - 153, N 10, - P. 4663-4672. 196. Hansen L. F., Rehfeld J. F. Impaired feedback of gastric functions in carboxypeptidase E deficient mice // Biochem. and Biophysic. Res. Comm. - 2000. - 267, N 2. P. 638-642. 197. Harada S., Tachiyashiki K., Imaizumi K. Effect of sex-hormones on rat-liver cytosolic alcohol dehydrogenase activity // J Nutr. Sci. Vitaminol. - 1998, - 44, N 5, P. 625-639. 198. Hitсhison W. D., Gianoulakis С., Kalant H. Effeсt of ethanol withdrawal on Я - endorphin levels in rat brain and pituitary. // Pharm. Bioсhem. Behav. - 1988. - 30, N 4. - P. 933-939. 199. Hook V.Y. Arginine and lysine product inhibition of bovine adrenomedullary carboxypeptidase H, a prohormone processing enzyme // Life Sci. - 1990. - 47, N 13. - P. 1135-1139. 200. Hook V.Y. Carboxypeptidase B-like activity for the processing of enkephalin precursors in the membrane component of bovine adrenomedullary chromaffin granules // Neuropeptides. - 1984. - 4, N 2. - P. 117-126. 201. Hook V.Y., Affolter H.U., Palkovits M. Carboxypeptidase H in the hypothalamo neurohypophysial system: evidence for processing and activation of a prohormone processing enzyme during axonal transport // J. Neurosci. - 1990. - 10, N 10. - P. 3219-3226. 202. Hook V.Y., LaGamma E.F. Product inhibition of carboxypeptidase H // J. Biol. Chem. - 1987. - 262, N 26. - P. 12583-12588. 203. Hook V.Y., Lee E.E. Two peptidases that convert 125J-Lys-Arg-(Met)-enkephalin and 125J-enkephalin-Arg6, respectively, to 125J-(Met)-enkephalin in bovine adrenal medullary chromaffin granules // FEBS Lett. - 1984. - 172, N 2. - P. 212-218. 204. Hook V.Y., Loh Y.P. Carboxypeptidase B-like convertasing enzyme activity in secretory granules of rat pituitary // Cell Biol. - 1984. - 81. - P. 2776-2780. 205. Hook V.Y., Mezey E., Fricker L.D., Pruss R.M., Siegel R.E., Brownstein M.J. Immunochemical characterization of carboxypeptidase B-like peptide-hormone-processing enzymes // Proc. Natl. Acad. Sci. USA. - 1982. - 82. - P. 4745-4749. 206. Hook V.Y.H., Affolter H.U. Identification of zymogen and mature forms of human carboxypeptidase H. A processing enzyme for the synthesis of peptide hormones // FEBS Lett. - 1988. - 238, N 2. - P. 338-342. 207. Hook V.Y.H., Eiden L. E. Two peptidases that convert 125J-Lys-Arg-(Met)-enkephalin and 125J-enkephalin-Arg6, respectively, to 125J-(Met)-enkephalin in bovine adrenal medullary chromaffin granules // FEBS Let. - 1984. - 172, N 2. - P. 212-218. 208. Hughes P.D., Kim Y.N., Randall P.K., Leslie S.W. Effect of prenatal ethanol exposure on the developmental profile of the NMDA receptor subunits in rat forebrain and hippocampus // Alcohol. Clin. Exp. Res. - 1998. - 22, N 6. - P. 1255-1261. 209. Inder W.J., Joyce P.R., Ellis M.J., Evans M.J., Livesey J.H., Donald R.A The effects of alcoholism on the hypothalamic-pituitary-adrenal axis: interaction with endogenous opioid peptides // Clin. Endocrinol. - 1995. - 43, N 3. - P. 283-290. 210. Irminger J.C., Verchere C.B., Meyer K., Halban P.A. Proinsulin targeting to the regulated pathway is not impaired in carboxypeptidase E deficient Cpe(Fat)/Cpe(Fat) mice // J. Biol. Chem. - 1997. - 272, N 44, P. 27532-27534. 211. Isenberg K.T., Bora P.S., Zhou Xia, Wu Xiaolin, Moore B. W., Lange L. G. Nonoxidative ethanol metabolism: expression of fatty aсid ethyl ester synthase-III in сultured neural сells. // Bioсhem. Biophys. Res. Сommun. - 1992. - 185, N 3. - P. 938-943. 212. Iversen I., Turner A. Neuropeptides and their peptidases: functional consideration // Neurochem. Intern. - 1987. - 12. - P. 383-387. 213. Jin K. L., Graham S. H., Nagayama T., Goldsmith P. C., Greenberg D. A., Zhou A., Simon R. P. Altered expression of the neuropeptide processing enzyme carboxypeptidase-E in the rat brain after global ischemia. // J. Cerebr. Blood Flow Metabol. - 2001. - 21. N 12. P. 1422-1429. 214. Juarez J., Detomasi E.,B. Sex differences in alcohol drinking patterns during forced and voluntary consumption in rats // Alcohol - 1999. - 19, N 1. - P. 15-22. 215. Jung M.E., Wallis C.J., Gatch M.B., Lal H. Sex differences in the pentylenetetrazol-like stimulus- induced by ethanol withdrawal // J Pharmacol. Exp. Ther. - 1999. - 291, N 2. - P. 576-582. 216. Jung M.E., Wallis C.J., Gatch M.B., Lal H. Sex-differences in nicotine substitution to a pentylenetetrazol discriminative stimulus during ethanol withdrawal in rats // Psychopharmacology - 2000. - 149, N 3. - P. 235-240. 217. Jung M.E., Wallis C.J., Gatch M.B., Lal H. Sex-differences in the discriminative stimulus effects of M-chlorophenylpiperazine and ethanol withdrawal // Psychopharmacology - 2000. - 149, N 2. - P. 170-175. 218. Jung Y.K., Fricker L. D. Expression of the carboxypeptidase-E gene - characterization of the initiator-binding proteins // Biochimie. - 1994. - 76. N 3-4. - P. 336-345. 219. Jung Y.K., Kunczt C.J., Pearson R.K., Dixon J.E., Fricker L.D. Structural characterization of the rat carboxypeptidase-E gene. // Mol. Endocrinol. - 1991. - 5, N 9. - P. 1257-1268. 220. Jung Y.K., Kunczt C.J., Pearson R.K., Fricker L.D., Dixon J.E. Expression of the rat carboxypeptidase-E gene in neuroendocrine and nonneuroendocrine cell lines // Mol. Endocrinol. - 1992. - 6, N 12. - P. 2027-2037. 221. Juvvadi S., Fan X.M., Nagle G.T., Fricker L.D. Characterization of aplysia carboxypeptidase E // FEBS Lett. - 1997. - 408, N 2, P. 195-200. 222. Keith L.D., Crabbe J.C., Robertson L.M., Young E.R. Ethanol dependence and the pituitary adrenal axis in mice. II. Temporal analysis of dependence and withdrawal // Life Sci. - 1983. - 33, N 19. - P. 1889-1897. 223. Kenney W. C. Formation of Schiff base adduct between acetaldehyde and rat liver microsomal phosphatidylethanolamine. // Alcohol. Clin. Exp. Res. - 1984. - 8, N 6. - P. 551-555. 224. Kim C.K., Yu W., Edin G., Ellis L., Osborn J.A., Weinberg J. Chronic intermittent stress does not differentially alter brain corticosteroid receptor densities in rats prenatally exposed to ethanol // Psychoneuroendocrinology - 1999. - 24, N 6. - P. 585-611. 225. Kimura K.A., Chiu J., Reynolds J.N., Brien J.F. Effect of chronic prenatal ethanol exposure on nitric oxide synthase-I and synthase-III proteins in the hippocampus of the near term fetal guinea pig // Neurotoxicol. Teratol. - 1999. - 21, N 3. - P. 251-259. 226. Kimura K.A., Reynolds J.N., Brien J.F. Ethanol neurobehavioral teratogenesis and the role of the hippocampal glutamate-N-methyl-D-aspartate receptor - nitric oxide synthase system // Neurotoxicol. Teratol. - 2000. - 22, N 5. - P. 607-616. 227. King J.C., Fabro S. Alcohol counsumption and cigarette smoking: effect on pregnancy // Clin. Obstet. Gynecol. - 1983. - 26. - P. 437-448. 228. Kinoshita, Jessop/ 229. Klein R. S., Das B., Fricker L. D. Secretion of carboxypeptidase E from cultured astrocytes and from AtT-20 cell, a neuroendocrine cell line: implications for neuropeptide biosynthesis // J. Neurochim. - 1992. - 58. N 6. - P. 2011-2018. 230. Kluger M.J. Fever: vole of pyrogens and cryagens // Physiol. Rev. - 1991. - 71. - P. 93. 231. Krahl S.E., Berman R.F., Hannigan J.H. Electrophysiology of hippocampal Ca1 neurons after prenatal ethanol exposure // Alcohol - 1999. - 17, N 2. - P. 125-131. 232. Kuhn P.E., Miller M.W. Expression of p53 and Alz-50 immunoreactivity in rat cortex - effect of prenatal exposure to ethanol // Exp. Neurol. - 1998. - 154, N 2. - P. 418-429. 233. Kulkosky P.J., Allison C.T., Allison T.G., Marquez L.M., Mattson B.J. Interaction of CCK and 8-Oh-Dpat in the satiation of alcohol intake // Alcohol - 1998. - 16, N 4. - P. 305-309. 234. Kulkosky P. J., Allison C. T., Mattson B. J. Thyrotropin releasing hormone decreases alcohol intake and preference in rats. //Alcohol. - 2000. - 20, N 1. - P. 87-91. 235. Kulkosky P. J., Clayborne Y. J., Sandoval S. L. Cholecystokinin and bombesin inhibit ethanol and food intake in rats selectively bred for ethanol sensitivity. // Alcohol. Clin. Exp. Res. - 1993. - 17, N 3. - P. 545-551. 236. Lacourse K.A., Friishansen L., Rehfeld J.F., Samuelson L.C. Disturbed progastrin processing in carboxypeptidase E deficient fat mice // FEBS Lett. - 1997. - 416, N 1. - P. 45-50. 237. Laslop A., Tschernitz C. Effects of nerve growth factor on the biosynthesis of chromogranin A and B, secretogranin II and carboxy-peptidase H in rat PC12 cells // Neuroscience. -1992. - 49, N 2. - P. 443-450. 238. Li T.K. Pharmacogenetics of responses to alcohol and genes that influence alcohol drinking. // J. Stud. Alcohol. - 2000. - 61, N 1. - P. 5-12. 239. Li Y., McGivern R.F., Nagahara A.H., Handa R.J Alterations in the estrogen sensitivity of hypothalamic proenkephalin mRNA expression with age and prenatal exposure to alcohol // Molecular Brain Research - 1997. - 47, N 1-2. - P. 215-222. 240. Lingfordhughes A.R., Acton P.D., Gacinovic S., Boddington S.J.A., Costa D.C., Pilowsky L.S., Ell P.J., Marshall E.J., Kerwin R.W. Levels of gamma-aminobutyric acid-benzodiazepine receptors in abstinent, alcohol-dependent women - preliminary findings from an I-123 lomazenil single- photon-emission-tomography study // Alcohol. Clin. Exp. Res. - 2000. - 24, N 9. - P. 1449-145. 241. Livy D.J., Maier S.E., West J.R. Fetal alcohol exposure and temporal vulnerability - effects of binge like alcohol exposure on the ventrolateral nucleus of the thalamus // Alcohol. Clin. Exp. Res. - 2001. - 25, N 5. - P. 774-780. 242. Loh Y.P., Brownstein M.J., Gainer H. Proteolysis in neuropeptide processing and ofker neurol functions // Ann.Rev.Neurosci. - 1984. - 7. - P. 183-185. 243. Loh Y.P., Snell C.R., Cool D.R. Receptor mediated targeting of hormones to secretory granules, role of carboxypeptidase E // Trends Endocrinol. Met. - 1997. - 8, N 4, P. 130-137. 244. Lowry O.H., Rosebrought N.J., Farr A.G., Randall R.J. Protein measurement with Folin phenol reagent // J. Biol. Chem. - 1951. - 193, N 1. - P. 265-275. 245. Luсas D., Penneс Y., Menez J. F., Floch H. H., Menn G. Le. Acetaldehyde adducts with serum proteins are not responsible for decreased drug binding in alcoholic patients. // Drug Alс. Depend. - 1986. - 17, N 1. - P. 67-71. 246. Lynch D.R., Braas K.M., Hutton J.C., Snyder S.H. Carboxypeptidase E (CPE) immunocytochemical localization in the rat central nervous system and pituitary gland // J. Neurosci. - 1990. - 10. - N 5. - P. 1592-1599. 247. Lynch D.R., Snyder S.M. Neuropeptides: multiple forms, metabolic pathnays and receptors // Ann. Rev. Biochem. - 1986. - 55. - P. 773-799. 248. Lynch D.R., Venable J.C., Snyder S.H. Enkephalin convertase in the heart: similar disposition to atrial natriuretic factor // Endocrinology. - 1988. - 122, N 6. - P. 2683-2691. 249. Lynch D.R., Venable J.C., Strittmatter S.M., Snyder S.H. Enkephalin convertase: charasterization and localization using [3H]guanidinoethyl-mercaptosuccinic acid // Biochimie. - 1988. - 70, N 1. - P. 57-64. 250. MacCumber M.W., Snyder S.H., Ross C.A. Carboxypeptidase E (enkephalin convertase): mRNA distribution in rat brain by in situ hybridization // J. Neurosci. - 1990. - 10, N 8. - P. 2850-2860. 251. Mackin R.B., Noe B.D. Charasterization of an islet carboxypep-tidase B involved in prohormone processing // Endocrinology. - 1987. - 120, N 2. - P. 457-468. 252. Maier S.E., West J.R. Regional differences in cell loss associated with binge- like alcohol exposure during the first 2 trimesters equivalent in the rat // Alcohol - 2001. - 23, N 1. - P. 49-57. 253. Mains R.E., Eipper B.A. Secretion and regulation of two biosyntetic enzyme activities, peptidyl-glycine -amidating monooxygenase and a carboxypeptidase, by mouse pituitary corticotropic tumor cells // Endocrinology. - 1984. - 115, N 5. - P. 1683-1690. 254. Maletti M., Besson J., Bataille D., Laburthe M., Rosselin M. Ontogenesis and immunoreactive forms of vasoactive intestinal peptide in rat brain // Acfa Endocrinol. - 1980. - 93, № 4. - P. 479-487. 255. Manser E., Fernandez D., Loo L., Goh P.Y., Monfries C., Hall C., Lim L. Human carboxypeptidase E., Isolation and characterization of the cDNA, sequ-ence conservation, expression and processing in vitro // Biochem. J. 1990. - 267, N 2. - P. 517-525. 256. Marks N., Berg N., Benuck M., Lo E.S., Novachenko H., Seyfried C. Prodynorphin processing by rat CNS fractions and purified enzyme: formation of dynorphin A 1-8 by sulfhydryl activated carboxypeptidase and peptidyl dipeptidase // Neurochem. Intern. - 1987. - 10, N 4. - P. 413-422. 257. Marks N., Grynbaum A., Benuck M. On the sequential cleavage of myelin basic protein by cathepsin A and D // J. Neurochem. - 1976. N 27. - P. 765-768. 258. Marks N., Stern F., Lajtha A. Changes in proteolytic enzymes and proteins during maturation of the brain // Brain Res. - 1975. - 86, № 2. - P. 307-322. 259. Martinez-Millan L., De Gandaries J.M., Irazusta J., Echevarria E., Casis L. Developmental changes of amino peptidase activity in the cortex of the cat hrain // Int. J. Dev. Neurosci. - 1993. - 11, № 1. - P. 11-15. 260. Mathieu-Kia A. M., Resson M. J. Repeatet administration of сoсaine, niсotine and ethanol: effeсts on preprodynorphin, preprotaсhykinin H and preproenkephalin mRNA expression in the dorsal and the ventral striatum of the rat // Moleс. Brain Res. - 1998. - 54. - P. 141-151. 261. Matsas R., Kenny A.S., Turner A.J. An immunohistochemical study of endopeptidase 24.11 (enkephalinase) in the pig nervous system // Neuroscience. - 1986. - 18, № 4. - P. 991-996. 262. McDonald J.K., Schwabe C. Intracellular exopeptidase // Proteinases in mammalian cells and tissues / Barrett A.J. (ed.). Amsterdam: Elsevier/North Holland Biomedical Press - 1977. - P. 311-391. 263. McGivern R.F., Clancy A.N., Mousa S., Couri D., Noble E.P. Prenatal alcohol exposure alters enkephalin levels, without affecting ethanol preference // Life Sci. - 1984. - 34, N 6. - P. 585-589. 264. McGivern R.F., Ervin M.G., Mcgeary J., Somes C., Handa R.J. Prenatal ethanol exposure induces a sexually dimorphic effect on daily water-consumption in prepubertal and adult rats // Alcohol. Clin. Exp. Res. - 1998. - 22, N 4. - P. 868-875. 265. McGivern R.F., Handa R.J., Raum W.J. Ethanol exposure during the last week of gestation in the rat - inhibition of the prenatal testosterone surge in males without long-term alterations in sex behavior // Neurotoxicol. Teratol. - 1998. - 20, N 4. - P. 483-490. 266. McMillian M.K., Hudson P.M., Lec D.Y., Thai L., Hung G.H., Hong J.S. Developmental changes . in rat adrenal enkephalin premrsor: peptide ratio // Brain. Res. Dev. Brain. Res. - 1993. - 71, № 1. - P. 75-80. 267. Meunier J.-C. The opioid peptides and their receptors // Biochimie. - 1986. - 68. - P. 1153-1158. 268. Mihalick S.M., Crandall J.E., Langlois J.C., Krienke J.D., Dube W.V. Prenatal ethanol exposure, generalized learning impairment, and medial prefrontal cortical deficits in rats // Neurotoxicol. Teratol. - 2001. - 23, N 5. - P. 453-462. 269. Miller M.W. A longitudinal study of the effects of prenatal ethanol exposure on neuronal acquisition and death in the principal sensory nucleus of the trigeminal nerve - interaction with changes induced by transection of the infraorbital nerve // J Neurocytol - 1999. - 28, N 12. - P. 999-1015. 270. Mitra A., Song L.X., Fricker L.D. The C-terminal region of carboxypeptidase E is involved in membrane-binding and intracellular routing in AtT-20 cells // J. Biol. Chem. - 1994. - 269, N 31. - P. 19876-19881. 271. Moore D.B., Ruygrok A.C., Walker D.W., Heaton M.B. Effects of prenatal ethanol exposure on parvalbumin expressing GABAergic neurons in the adult rat medial septum // Alcohol. Clin. Exp. Res. - 1997. - 21, N 5. - P. 849-856. 272. Mourik J., Raeven P., Steur K., Addink A.D.F. Anatrobic metabolism of red skeletsl muscle of goldfish, Carassius auratus (L). Mitochondrial produced acetaldehyde as anaerobic electron acceptor // FEBS Lett. - 1982. - 137, N 1. Р. 111-114. 273. Naggert J.K., Fricker L.D., Varlamov O., Nishina P.M., Rouille Y., Steiner D.F., Carroll R.J., Paigen B.J., Leiter E.H. Hyperproinsulinaemia in obese fat/fat mice associated with a carboxypeptidase E mutation which reduces enzyme activity // Nature Genetics. - 1995. - 10, N 2. - P. 135-142. 274. Nalamachu S.R., Song L.X., Fricker L.D. Regulation of carboxypeptidase E - effect of Ca2+ on enzyme-activity and stability // J. Biol. Chem. - 1994. - 269, N 15. - P. 11192-11195. 275. Nemeskeri A., Acs Z., Toth B.E. Prolactin-synthesiring and prolactin-releasing activity of fetal andeurly postnatal rat piluitaries: in vivo and in vitro studies using RIA, reverse hemolytic plaque assay and immunocytochemistry. // Neuroendocrinology. - 1995. - 61. - P. 687-694. 276. Nolan C.J., Bestervelt L.L., Mousigian C.A., Maimansomsuk P., Cai Y., Piper W.N. Chronic ethanol consumption depresses hypothalamic-pituitary-adrenal function in aged rats // Life Sci. - 1991. - 49, N 25. P. 1923-1928. 277. Norenberg U., Richter D. Processing of the oxytocin precursor: isolation of an exopeptidase from neurosecretory granules of bovine pituitaries // Biochem. Biophys. Res. Commun. - 1988. - 156, N 2. - P. 898-904. 278. Oakes M. G., Davis T. P. The ontogeny of enzymes involved in post-translational processing and metabolism of neuropeptides. // Dev. Brain Res. - 1994. - 80. N 1-2. P. 127-136. 279. Orskov C., Buhl T., Rabenhoj L., Kofod H., Holst J. J. Carboxypeptidase-B-like processing of the C-terminus of glucagon-like peptide-2 in pig and human small intestine // FEBS Lett. - 1989. - 247, N 2. P. 193-196. 280. Osborn J.A., Kim C.K., Steiger J., Weinberg J. Prenatal ethanol exposure differentially alters behavior in males and females on the elevated plus-maze // Alcohol. Clin. Exp. Res. - 1998. - 22, N 3. - P. 685-696. 281. Osborn J.A., Yu C., Gabriel K., Weinberg J. Fetal ethanol effects on benzodiazepine sensitivity measured by behavior on the elevated plus-maze // Pharmacol. Biochem. Behav. - 1998. - 60, N 3. - P. 625-633. 282. Osborn J.A., Yu C., Stelzl G.E., Weinberg J. Effects of fetal ethanol exposure on pituitary-adrenalsSensitivity to secretagogues // Alcohol. Clin. Exp. Res. - 2000. - 24, N 7. - P. 1110-1119. 283. Oyarce A.M., Hand T.A., Mains R.E., Eipper B.A. Dopaminergic regulation of secretory granule associated proteins in rat intermediate pituitary // J. Neurochem. - 1996. - 67, N 1. - P. 229-241. 284. Ozer E., Sarioglu S., Gure A. Effects of prenatal ethanol exposure on neuronal migration, neuronogenesis and brain myelination in the mice brain // Clin. Neuropatol. - 2000. - 19, N 1. - P. 21-25. 285. Parkinson D. Carboxypeptidase H in bovine pituitary gland: soluble forms are not processed at the C-terminus // Mol. Cell. Endocrinol. - 1992. - 86, N 3. - P. 221-233. 286. Parkinson D. Two soluble forms of bovine carboxypeptidase H have different NH2-terminal sequences // J. Biol. Chem. - 1990. - 265, N 28. - P. 17101-17105. 287. Perloff M.D., Kream RM., Beinfeld M.C. Reduced levels of substance P in the brains of Cpe(Fat)/Cpe(Fat) Mice // Peptides. - 1998. - 19, N 6, P. 1115-1117. 288. Prendergast M.A., Harris B.R., Blanchard J.A., Mayer S., Gibson D.A., Littleton J.M. In-vitro effects of ethanol withdrawal and spermidine on viability of hippocampus from male and female rat // Alcohol. Clin. Exp. Res. - 2000. - 24, N 12. - P. 1855-1861. 289. Pshezhetsky A.V., Potier M. Direct affinity purification and supramolecular organization of human lysosomal cathepsin A // Arch. Biochem. Biophys. - 1994. - 313, N 1. - P. 64-70. 290. Rasmussen D.D., Boldt B.M., Bryant C.A., Mitton D.R., Larsen S.A., Wilkinson C.W. Chronic daily ethanol and withdrawal: 1. Long-term changes in the hypothalamo-pituitary-adrenal axis // Alcohol. Clin. Exp. Res. - 2000. - 24, N 12. - P. 1836-1849. 291. Revskoy S., Halasz I., Redei E. Corticotropin-releasing hormone and proopiomelanocortin gene expression Is altered selectively in the male rat fetal thymus by maternal alcohol consumption // Endocrinology - 1997. - 138, N 1. - P. 389-396. 292. Reznik S. E., Salafia C. M., Lage J. M., Fricker L. D. Immunohistochemical localization of carboxypeptidase-E and carboxypeptidase-D in the human placenta and umbilical-cord // J. Histochem.and Cytochem. - 1998. - 46, N 12. P. 1359-1367. 293. Rikke B.A., Simpson V.J., Montoliu L., Johnson T.E. No effect of albinism on sedative-hypnotic sensitivity to ethanol and anesthetics // Alcohol. Clin. Exp. Res. - 2001. - 25, N 2. - P. 171-176. 294. Rintala J., Jaatinen P., Lu W., Sarviharju M., Eriksson C.J.P., Laippala P., Kiianmaa K., Hervonen A. Effects of lifelong ethanol consumption on erebellar layer volumes in AA and ANA rats // Alcohol. Clin. Exp. Res. - 1997. - 21, N 2. - P. 311-317. 295. Rivier C. Female rats release more corticosterone than males in response to alcohol: influence of circulating sex steroids and possible consequences for blood alcohol levels. // Alcohol. Clin. Exp. Res. - 1993. - 17. N. 4. - P. 854-859. 296. Rivier C., Bruhn T., Vale W. Effect of ethanol on the hypothalamic-pituitary-adrenal axis in the rat: role of corticotropin-releasing factor (CRF) // J. Pharmacol. Exp. Ther. - 1984. - 229, N 1. - P. 127-131. 297. Rivier C., Imaki T., Vale W. Prolonged exposure to alсohol: effeсt on сRF mRNA levels, and CRF - and stress-induсed ACTH seсretion in the rat // Brain Res. - 1990. - 520, N 1-2. - P. 1-5. 298. Rivier C., Rivest S., Vale W. Alcohol-induced inhibition of LH secretion in intact and gonadectomized male and female rats: possible mechanisms // Alcohol. Clin. Exp. Res. - 1992. - 16, N 5. - P. 935-941. 299. Rockman C.E., Markert L.E., Delrizzo M. Effects of prenatal ethanol exposure on ethanol-induced locomotor activity in rat // Alcohol. - 1989. - 6, N 5. - P. 353-356. 300. Rodriguez C., Brayton K.A., Brownstein M., Dixon J.E. Rat preprocarboxypeptidase H. Cloning, characterization, and sequence of the cDNA and regulation of the mRNA by corticotropin releasing factor // J. Biol. Chem. - 1989. - 264, N 10. - P. 5988-5995. 301. Rossier, J., Barres, E., Hutton, J.C., Ricknell, R.J. Radiometric assay for carboxypeptidase H (EC 3.4.17.10) and other carboxypeptidase B-like enzymes // Anal. Biochem. - 1989. - 178, N 1. - P. 27-31. 302. Rouille Y., Chauvet J., Acher R. Partial conversion of vasopressinyl-Gly-Lys-Arg into pharmacologically active vasopressin through secretory granule carboxypeptidase E and alpha-amidating processing enzymes // Biochem. Int. - 1992. - 26, N 4. - P.739-746. 303. Rovere C., Viale A., Nahon J., Kitabgi P. Impaired processing of brain proneurotensin and promelanin concentrating hormone in obese fat/fat mice // Endocrinology. - 1996. - 137, N 7. - P. 2954-2958. 304. Roy A., Mittal N., Zhang H., Pandey S. C. Modulation of cellular expression of glucocorticoid receptor and glucocorticoid response element-DNA dinding in rat brain during alcohol drinking and withdrawal // J. Pharmacol. Exp. Ther. - 2002. - 301, N 2, - P. 774-784. ХЭ364 305. Salonen I., Huhtaniemi I. Effects of chronic ethanol diet on pituitary-testicular function of the rat // Biol. Reprod. -1990. - 42. P. 55-62. 306. Sarviharju M., Jaatinen P., Hyytia P., Hervonen A., Kiianmaa K. Effects of lifelong ethanol consumption on drinking behavior and motor impairment of alcohol-preferring AA and alcohol-avoiding ANA rats // Alcohol - 2001. - 23, N 3. - P. 157-166. 307. Scarceriaux V., Pelaprat D., Lhiaubet A.M., Schimptf R.M., Tramu G., Rostene W. Developmental pattern of neurofensin content in rat hypothalamic neurons culbured in serum free medium-comparison with in vivo data // Dev. Brain Res. - 1994. - 81, № 1. - P. 128-130. 308. Schlamp C.L., Nickells R.W. Light and dark cause a shift in the spatial expression of a neuropeptide processing enzyme in the rat retina // J. Neurosci. - 1996. - 16, N 7. - P. 2164-2171. 309. Schneider M.L., Moore C.F., Kraemer G.W. Moderate alcohol during pregnancy - learning and behavior in adolescent Rhesus-Monkeys // Alcohol. Clin. Exp. Res. - 2001. - 25, N 9. - P. 1383-1392. 310. Seizinger B.R., Brinn C., Herr A. Evidence for a differential postnatal development of proenkephalin B (prodynorphin) - derived opieid peptides in the rat hypothalamus // Endocrinology. - 1984. - 115, № 3. - P. 926-935. 311. Shen F.S., Loh Y.P. Intracellular Misrouting and Abnormal Secretion of Adrenocorticotropin and Growth Hormone in Cpe (Fat) Mice Associated with a Carboxypeptidase E Mutation // Proc. Nat. Acad. Sci. USA. - 1997. - 94, N 10. - P. 5314-5319. 312. Silva W.I., Benitez K., Ocasio J., Martinez L., Rosario N. Neuropeptide like immunoreactivities and carboxypeptide H activity associated with bovine brain clathrin coated vesicles // Neuropeptides. -1995. - 28, N 6, P. 341-349. 313. Sinha P., Halasz I., Choi J.F., Mcgivern R.F., Redei E. Maternal adrenalectomy eliminates a surge of plasma dehydroepiandrosterone in the mother and attenuates the prenatal testosterone surge in the male fetus // Endocrinology - 1997. - 138, N 11. - P. 4792-4797. 314. Skutohness C.D., Holroyde C.P., Nyers R.N. et al. Acetat in normal human blood // J. Clin. Invest. - 1979. - 64. - P. 708-713. 315. Sluyter F., Hof M., Ellenbroek B.A., Degen S.B., Cools A.R. Genetic, sex, and early environmental-effects on the voluntary alcohol - intake in Wistar rats // Pharmacol. Biochem. Behav. - 2000. - 67, N 4. - P. 801-808. 316. Smith D.R., Pallen C.J., Murphy D., Lim L. Pituitary-specific transcriptional initiation sites of the rat carboxypeptidase-H gene and the influence of thyroid hormone status // Mol. Endocrinol. - 1992. - 6, N 5. - P. 713-722. 317. Smyth D.G., Maruthainar K., Darby N.J., Fricker L.D. Catalysis of slow C terminal processing reactions by carboxypeptidase H // J. Neurochem. - 1989. - 53, N 2. - P. 489-493. 318. Song L.X, Fricker L.D. Calcium and pH dependent aggregation of carboxypeptidase E // J. Biol. Chem. - 1995. - 270, N 14. - P. 7963-7967. 319. Song L.X., Fricker L.D. The pro region is not required for the expression or intracellular routeing of carboxypeptidase E // Biochemical Journal. - 1997. - 323, N 4. - P. 265-271. 320. Spencer R.L., McEwen B.S. Impaired adaptation of the hypothalamic-pituitary-adrenal axis to chronic ethanol stress in aged rats // Neuroendocrinol. - 1997. - 65, N 5. - P. 353-359. 321. Spenсer R. L., MсEwen B. S. Adaptation of the hypothalamiс- pituitary-adrenal axis to сhroniс ethanol stress. // Neuroendoсrinology. - 1990. - 52, N 5. - P. 481-489. 322. Srivastava V.K., Hiney J.K., Dearth R.K., Les Dees W. Chronic effects of prepubertal ethanol administration on steroidogenic acute regulatory protein in the rat ovary.// Alcohol. Clin. Exp. Res. - 2002. - 26, N 1. - P. 107-113. 323. Stack G., Fricker L.D., Snyder S.H. A sensitive radiometric assay for enkephalin convertase and for carboxypeptidase B-like enzymes // Life Sci. - 1984. - 34. - P. 113-121. 324. Stege T. E. Induсtion of aсetaldehyde lipid peroxidation in hepatiс сell. // Reс. Commun. Chem. Phatal. Pharmaсol. - 1982. - 36, N 2. - P. 287-297. 325. Stone T.E., Li J.P., Bernasconi P. Purification and Characterization of the Manduca Sexta Neuropeptide Processing Enzyme Carboxypeptidase E // Arch. Insect Biochem. Phisiol. - 1994. - 27, N 3, P. 193-203. 326. Strittmatter S.M., Lynch D.R., Skyder S.H. Differential ontogeny of rat brain peptidases: prenatal expression of enkephalin convertase and postnatal development of angiotensin converting enzyme // Dev. Brain. Res. - 1986. - 29, № 2. - P. 207-215. 327. Strittmatter S.M., Lynch D.R., Snyder S.H. (3H)guanidinoethyl-mercaptosuccinic acid binding to tissue homogenates. Selective labeling of enkephalin convertase // J. Biol. Chem. - 1984. - 259, N 19. - P. 11812-11817. 328. Sullivan K.A., Traurig H.H., Papka R.E. Ontogeny of neurotransmitter system in the paracervical ganglion and uterine cervix of the rat // Anat. Rec. - 1994. - 240, № 3. - P. 377-386. 329. Summers M. L., Gidley M. S., Sanders S. K. Aсetaldehydeenkephalins: eluсidation of the struсture of the aсetaldehyde adduсts of methionine-enkephalin and leuсine- enkephalin. // FEBS. - 1980. - 111, N 2. - P. 307-310. 330. Supattapone S., Fricker L.D., Snyder S.H. Purification and characterization of a membrane-bound enkephalin-forming carboxypeptidase, “enkephalin convertase” // Neurochem. - 1984. - 42, N 4. - P. 1017-1023. 331. Szot P., White S.S., Veith R.C., Rasmussen D.D. Reduced gene expression for dopamine biosynthesis and transport in midbrain neurons of adult male rats exposed prenatally to ethanol // Alcohol. Clin. Exp. Res. - 1999. - 23, N 10. - P. 1643-1649. 332. Tabakoff B., Hoffman P. L., Litjequist S. Effeсts of ethanol on the aсtivity of brain enzymes. // Enzyme. - 1987. - 37, N 1-2. - P. 70-86. 333. Taylor A.N., Branch B.J., Day J.R., Lu J.K.H. Alcohol effects progesterone, testosterone and prolactin secretionin pragnant rats // 31th Congr. Physiol. Sci. - Helsinki, 1989. - P. 538-540. 334. Tesсhke R., Hasumura V., Lieber Сh. S. Hepatiс ethanol metabolism: respeсtive roles of alсohol dehydrogenate, the miсrosomal ethanol-oxidizing system and сatalase. // Arсh. Bioсhem. - 1976. - 175. - P. 635-643. 335. Tschernitz C, Laslop A, Eiter C, Kroesen S, Winkler H. Biosynthesis of large dense core vesicles in PC12 cells: effects of depolarization and second messengers on the mRNA levels of their constituets // Brain. Res. Mol. Brain Res. - 1995. - 31, N 1-2. - P. 131-140. 336. Udupi V., Gomez P., Song L.X., Varlamov O., Reed J.T., Leiter E.H., Fricker L.D., Greeley G.H. Effect of carboxypeptidase E deficiency on progastrin processing and gastrin messenger ribonucleic acid expression in mice with the fat mutation // Endocrinology. - 1997. - 138, N 5, P. 1959-1963. 337. Van Thiel D. H., Tarter R. E., Rosenblum E., Gavaler J. S. Ethanol, its metabolism and gonadal effeсts: does sex make a defferenсe? // Adv. Alсohol. Subst. Abuse. - 1988. - 7, N 3-4. - P. 131-169. 338. Varlamov O., Fricker L.D. The C terminal region of carboxypeptidase E involved in membrane binding is distinct from the region involved with intracellular routing // J. Biol. Chem. - 1996. - 271, N 11. - P. 6077-6083. 339. Varlamov O., Fricker L.D., Furukawa H., Steiner D.F., Langley S.H., Leiter E.H. Beta cell lines derived from trans genic Cpe(Fat)/Cpe(Fat) mice are defective in carboxypeptidase E and proinsulin processing // Endocrinology. - 1997. - 138, N 11, P. 4883-4892. 340. Varlamov O., Leiter E.H., Fricker L. Induced and spontaneous mutations at Ser202 of carboxypeptidase E. Effect on enzyme expression, activity, and intracellular routing // J. Biol. Chem. - 1996. - 271, N 24. - P. 13981-13986. 341. Vernigora A.N., Gengin M.T., Shtchetinina N.V., Nikishin N.N. Comparision of long-term effect of ethanol, tranquillizers and emotional stress on activity of some neuropeptide metabolism enzyme // Neurochemistry and pharmacology of drug addiction and alcoholism: Proc. Int. Conf. (S.-Petersburg, 1996). - S.-Petersburg: Inst. of the Human Brain, 1996. - P. 70. 342. Vida M.I.R., Kleid M.C., Ase A., Finkielman S., Nahmond V.E., Vindrola O. Synenkephalin processing in embryonic rat brain // Dev. Brain. Res. - 1994. - 77, № 2. - P. 151-156. 343. Vivian J.A., Green H.L., Young J.E., Majerksy L.S., Thomas B.W., Shively C.A., Tobin J.R., Nader M.A., Grant K.A. Induction and maintenance of ethanol self-administration in cynomolgus monkeys (Macaca-Fascicularis) - long-term characterization of sex and individual-differences // Alcohol. Clin. Exp. Res. - 2001. - 25, N 8. - P. 1087-1097. 344. Wallace E.F., Evans C.J., Jurik, S.M., Mettord I.N., Barchas J.D. Carboxypeptidase B activity from adrenal medulla - is it involved in the processing of proenkephalin. // Life Sci. - 1982. - 31, N 16-17. - P. 1793-1796. 345. Wand G.S., Dobs A.S. Alterations in the hypothalamic-pituitary-adrenal axis in actively drinking alcoholics // J. Clin. Endocrinol. Metabol. -1991. - 72. - P. 1290-1295. 346. Wardlaw S.L. Regulation of -endorphin, corticotropin - like intermediate lobe hypothalamus by testosterone // Endocrinology. - 1986. - 119, № 1. - P. 19-24. 347. Weisman B.A., Azov R., Sarne Y. Ontogenesis of enkephalin and humoral andorphin in the rat brain // Neurochem. Int. - 1983. - 5, № 1. - P. 113-116. 348. Wilkinson с. M., сrabbe J. с., Keith L. D., Kendall J. W., Dorsa D. M. Influenсe of ethanol dependenсe on regional brain сontent of Я -endorphin in the mouse. // Brain Res. - 1986. - 378, N 1. - P. 107-114. 349. Woodkams P.L., Allen Y.S., McGovern J., Allen J.M., Bloom S.R., Balars R., Polrak J.M. Immunohistochemical analysis of early ontogeny of the neuropeptide Y system in rat brain // Neurosci. - 1985. - 15. - P. 173-202. 350. Yajima R., Chikuma T., Kato T. A rapid anterograde axonal transport of carboxypeptidase H in rat scia-tic nerves // J. Neurochem. - 1994. - 63, N 3, P. 997-1002. 351. Zagon I.S., Isayama T., Melaughlin P.J. Preproenkepkalin messenger RNA expression in the developing and adult rat brain // Mol. Brain Res. - 1994. - 21, № 1-2. - P. 85-98. 352. Zamir N., Weber E., Palkovits M., Brownstein M., Differential processing of prodynorphin and proenkephalin in specific regions of the rat brain // Proc. Natl. Acad. Sci. USA. - 1984. - 81. - P. 6886-6889. 353. Zheng M., Streck R.D., Scott R.E.M., Seidah N.G., Pintar J.E. The developmental expression in rat of proteases furin, Pc 1,Pc 2, and carboxypeptidase E-implications for carly maturation of proteolytic processing capacity // J.Nourosci. - 1994. - 14, № 8. - P. 4656-4673.
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
© Все права защищены. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|